Part 1: Change Data Capture and Debezium Practical Implementation - Complete Real-time Data Synchronization
Part 1: Change Data Capture and Debezium Practical Implementation - Complete Real-time Data Synchronization
From CDC core concepts to building real-time data synchronization systems with Debezium, a complete guide to event-driven architecture.
📋 Table of Contents
- Change Data Capture Basic Concepts
- Debezium Architecture and Core Features
- Debezium Connector Configuration and Operations
- Schema Evolution and Schema Registry
- Real-time Data Transformation and Routing
- Practical Project: Real-time Data Synchronization System
- Learning Summary
🔄 Change Data Capture Basic Concepts
What is CDC?
Change Data Capture (CDC) is a technology that detects and captures database changes in real-time and propagates them to other systems. It overcomes the limitations of traditional batch processing and enables real-time data synchronization.
Traditional Batch Processing vs CDC
Characteristics | Batch Processing | CDC Approach |
---|---|---|
Latency | High (hours/days) | Low (seconds/minutes) |
Throughput | High (bulk processing) | Medium (real-time stream) |
Complexity | Low | High |
Consistency | Eventually consistent | Strong consistency possible |
Resource Usage | Periodically high | Continuously medium |
Real-time Processing | Impossible | Possible |
Main Use Cases | • ETL pipelines • Data warehouse construction • Daily/weekly reports • Large-scale data migration |
• Real-time analytics • Event-driven architecture • Data lake real-time sync • Microservice data synchronization |
CDC Adoption ROI Evaluation
Evaluation Criteria | Score | Conditions | Description |
---|---|---|---|
Business Requirements | 9 | Real-time data processing required | Essential for competitive advantage |
Technical Infrastructure | 8 | Kafka ecosystem available | Strong foundation for implementation |
Team Expertise | 7 | Experience with streaming technologies | Requires learning investment |
Data Volume | 9 | High-frequency changes | CDC provides significant benefits |
Compliance Requirements | 8 | Audit trail and data lineage needed | CDC ensures complete change tracking |
System Integration | 8 | Multiple downstream systems | CDC reduces integration complexity |
ROI Recommendation
Total Score | Recommendation | Priority |
---|---|---|
49/60 | Highly Recommended | High Priority |
CDC Tool Selection Criteria
Conditions | Recommended Tool | Reason |
---|---|---|
Open source preferred | Debezium | Most mature open-source CDC solution |
Cloud-native required | AWS DMS | Fully managed service |
High performance needed | Maxwell | Optimized for MySQL |
Enterprise features required | Confluent Platform | Comprehensive enterprise solution |
Selection Criteria Weights
Criteria | Weight |
---|---|
Performance | 25% |
Reliability | 20% |
Community Support | 15% |
Documentation | 15% |
Cost | 10% |
Ease of Use | 10% |
Integration | 5% |
🏗️ Debezium Architecture and Core Features
Debezium Architecture Overview
Debezium is built on Apache Kafka and Kafka Connect, providing a distributed platform for capturing database changes.
Core Components
Debezium consists of several key components that work together to provide reliable change data capture:
- Debezium Connectors: Database-specific connectors that capture changes
- Kafka Connect Framework: Provides the infrastructure for running connectors
- Schema Registry: Manages schema evolution and compatibility
- Kafka Brokers: Distribute change events across the cluster
- Consumer Applications: Process and react to change events
Database-Specific Change Detection Mechanisms
Database | Mechanism | Advantages | Limitations |
---|---|---|---|
MySQL | Binary Log (Binlog) | • High performance • Complete change history • Minimal impact on DB |
• Requires binary logging enabled • Binlog retention management |
PostgreSQL | Write-Ahead Log (WAL) | • ACID compliance • Logical replication • Real-time streaming |
• WAL segment management • Replication slot monitoring |
MongoDB | Oplog | • Native change stream • Automatic failover • Sharded cluster support |
• Oplog size limitations • Memory usage considerations |
Event Streaming Patterns
Pattern | Description | Use Case | Implementation |
---|---|---|---|
Event Sourcing | Store all changes as events | Audit trails, replay capabilities | Event store with Kafka topics |
CQRS | Separate read and write models | High-performance read operations | Write model via CDC, read model via projections |
Saga | Distributed transaction management | Microservice coordination | Event-driven transaction coordination |
class EventStreamingPatterns:
def implement_event_sourcing_pattern(self):
"""Event Sourcing pattern implementation example"""
# Event store configuration
event_store_config = {
"kafka_topics": {
"order_events": "orders.ecommerce.orders",
"customer_events": "orders.ecommerce.customers",
"product_events": "orders.ecommerce.products"
},
"event_serialization": "Avro",
"snapshot_frequency": "every_1000_events",
"retention_policy": "7_days"
}
# Event replay example
def replay_events_for_state(self, entity_id, from_timestamp):
"""Restore entity state by replaying events"""
events = self.get_events(entity_id, from_timestamp)
state = {}
for event in events:
state = self.apply_event(state, event)
return state
return event_store_config
def implement_cqrs_pattern(self):
"""CQRS pattern implementation example"""
# Command side (Write Model)
command_side_config = {
"write_model": {
"database": "mysql_orders",
"tables": ["orders", "order_items"],
"optimization": "for_writes"
},
"event_publishing": {
"debezium_connector": "mysql-orders-connector",
"topics": ["orders.ecommerce.orders"]
}
}
# Query side (Read Model)
query_side_config = {
"read_models": {
"elasticsearch": {
"indexes": ["orders_read_model", "customers_read_model"],
"optimization": "for_reads",
"projections": ["order_summary", "customer_profile"]
},
"redis": {
"caches": ["order_cache", "customer_cache"],
"ttl": "1_hour"
}
}
}
return {
"command_side": command_side_config,
"query_side": query_side_config
}
def implement_saga_pattern(self):
"""Saga pattern implementation example"""
# Choreography pattern
choreography_saga = {
"order_processing_saga": {
"steps": [
{
"service": "order_service",
"action": "create_order",
"compensation": "cancel_order",
"event": "OrderCreated"
},
{
"service": "inventory_service",
"action": "reserve_inventory",
"compensation": "release_inventory",
"event": "InventoryReserved"
},
{
"service": "payment_service",
"action": "process_payment",
"compensation": "refund_payment",
"event": "PaymentProcessed"
}
],
"compensation_strategy": "reverse_order"
}
}
# Orchestration pattern
orchestration_saga = {
"saga_orchestrator": {
"state_machine": {
"states": ["STARTED", "INVENTORY_RESERVED", "PAYMENT_PROCESSED", "COMPLETED"],
"transitions": {
"STARTED": "INVENTORY_RESERVED",
"INVENTORY_RESERVED": "PAYMENT_PROCESSED",
"PAYMENT_PROCESSED": "COMPLETED"
},
"compensation_states": ["INVENTORY_RELEASED", "PAYMENT_REFUNDED", "CANCELLED"]
}
}
}
return {
"choreography": choreography_saga,
"orchestration": orchestration_saga
}
⚙️ Debezium Connector Configuration and Operations
MySQL Connector Advanced Configuration
class DebeziumConnectorManager:
def __init__(self):
self.kafka_connect_url = "http://kafka-connect:8083"
self.connector_configs = {}
def configure_mysql_connector(self, database_config):
"""Configure MySQL connector with advanced settings"""
mysql_connector_config = {
"name": f"mysql-{database_config['database_name']}-connector",
"config": {
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
"database.hostname": database_config["hostname"],
"database.port": str(database_config["port"]),
"database.user": database_config["username"],
"database.password": database_config["password"],
"database.server.id": str(database_config["server_id"]),
"topic.prefix": f"{database_config['database_name']}.{database_config['schema_name']}",
# Table filtering
"table.include.list": ",".join(database_config["include_tables"]),
"database.include.list": database_config["database_name"],
# Performance optimization
"binlog.buffer.size": "32768",
"max.batch.size": "4096",
"max.queue.size": "16384",
"poll.interval.ms": "100",
# Schema management
"schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
"schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
"include.schema.changes": "true",
# Data transformation
"transforms": "unwrap,route,addTimestamp",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.unwrap.delete.handling.mode": "drop",
"transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table",
# Topic routing
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": f"{database_config['database_name']}\\.{database_config['schema_name']}\\.([^.]+)",
"transforms.route.replacement": f"{database_config['database_name']}.$1",
# Field addition
"transforms.addTimestamp.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.addTimestamp.static.field": "processed_at",
"transforms.addTimestamp.static.value": "$(date:yyyy-MM-dd'T'HH:mm:ss'Z')",
# Transaction metadata
"provide.transaction.metadata": "true",
"transaction.topic": f"transactions.{database_config['database_name']}"
}
}
return mysql_connector_config
PostgreSQL Connector Configuration
def configure_postgresql_connector(self, database_config):
"""Configure PostgreSQL connector with WAL settings"""
postgresql_connector_config = {
"name": f"postgresql-{database_config['database_name']}-connector",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": database_config["hostname"],
"database.port": str(database_config["port"]),
"database.user": database_config["username"],
"database.password": database_config["password"],
"database.dbname": database_config["database_name"],
"database.server.name": f"{database_config['database_name']}_server",
# WAL configuration
"slot.name": f"debezium_{database_config['database_name']}",
"publication.name": f"debezium_publication_{database_config['database_name']}",
"plugin.name": "pgoutput",
# Table filtering
"table.include.list": ",".join(database_config["include_tables"]),
"schema.include.list": database_config["schema_name"],
# Performance settings
"max.queue.size": "8192",
"max.batch.size": "2048",
"poll.interval.ms": "1000",
# Schema management
"schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
"schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
"include.schema.changes": "true"
}
}
return postgresql_connector_config
MongoDB Connector Configuration
def configure_mongodb_connector(self, database_config):
"""Configure MongoDB connector with replica set settings"""
mongodb_connector_config = {
"name": f"mongodb-{database_config['database_name']}-connector",
"config": {
"connector.class": "io.debezium.connector.mongodb.MongoDbConnector",
"mongodb.hosts": database_config["connection_string"],
"mongodb.user": database_config["username"],
"mongodb.password": database_config["password"],
"mongodb.name": database_config["database_name"],
# Collection filtering
"collection.include.list": ",".join(database_config["include_collections"]),
"database.include.list": database_config["database_name"],
# Oplog settings
"mongodb.poll.interval.ms": "1000",
"mongodb.connect.timeout.ms": "30000",
"mongodb.socket.timeout.ms": "30000",
# Schema management
"schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
"schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
"include.schema.changes": "true"
}
}
return mongodb_connector_config
Connector Management Operations
class ConnectorOperations:
def __init__(self, kafka_connect_url):
self.kafka_connect_url = kafka_connect_url
def deploy_connector(self, connector_config):
"""Deploy a new connector"""
import requests
import json
response = requests.post(
f"{self.kafka_connect_url}/connectors",
headers={"Content-Type": "application/json"},
data=json.dumps(connector_config)
)
if response.status_code == 201:
print(f"✅ Connector '{connector_config['name']}' deployed successfully")
return response.json()
else:
print(f"❌ Failed to deploy connector: {response.text}")
return None
def get_connector_status(self, connector_name):
"""Get connector status and health"""
import requests
response = requests.get(f"{self.kafka_connect_url}/connectors/{connector_name}/status")
if response.status_code == 200:
status = response.json()
return {
"name": status["name"],
"state": status["connector"]["state"],
"tasks": [
{
"id": task["id"],
"state": task["state"],
"worker_id": task["worker_id"]
}
for task in status["tasks"]
]
}
else:
print(f"❌ Failed to get connector status: {response.text}")
return None
def restart_connector(self, connector_name):
"""Restart a connector"""
import requests
response = requests.post(f"{self.kafka_connect_url}/connectors/{connector_name}/restart")
if response.status_code == 204:
print(f"✅ Connector '{connector_name}' restarted successfully")
return True
else:
print(f"❌ Failed to restart connector: {response.text}")
return False
📊 Schema Evolution and Schema Registry
Schema Evolution Concept
Schema evolution is the ability to modify database schemas over time while maintaining backward and forward compatibility. This is crucial for long-running CDC systems where the source schema may change.
Importance of Schema Evolution
- Backward Compatibility: New consumers can read data written by old producers
- Forward Compatibility: Old consumers can read data written by new producers
- Gradual Deployment: Allows phased rollout of schema changes
- Data Consistency: Ensures data integrity across schema versions
Schema Registry Integration
class SchemaRegistryManager:
def __init__(self, registry_url):
self.registry_url = registry_url
def configure_schema_registry(self, registry_config):
"""Configure Schema Registry for Debezium"""
schema_registry_config = {
"schema_registry_url": registry_config["url"],
"key.converter": "io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url": registry_config["url"],
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": registry_config["url"],
"value.converter.auto.register.schemas": "true",
"value.converter.use.latest.version": "true",
"transforms": "unwrap",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.unwrap.delete.handling.mode": "drop",
"transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table"
}
return schema_registry_config
Schema Evolution Scenarios
Scenario | Description | Compatibility | Handling | Example |
---|---|---|---|---|
Column Addition | Add new column | FORWARD | New column handled as null or default value | ALTER TABLE users ADD COLUMN phone VARCHAR(20) |
Column Deletion | Drop column | BACKWARD | Remove column from existing data | ALTER TABLE users DROP COLUMN old_field |
Column Rename | Rename column | NONE | Add new column then remove old column | ALTER TABLE users RENAME COLUMN old_name TO new_name |
Column Type Change | Change column type | FORWARD_TRANSITIVE | Convert after type compatibility check | ALTER TABLE users MODIFY COLUMN age INT |
Table Addition | Add new table | FORWARD | Automatically create new topic | CREATE TABLE new_table (...) |
Table Deletion | Drop table | BACKWARD | Keep existing topic but stop new events | DROP TABLE old_table |
Schema Compatibility Strategies
Strategy | Description | Use Case | Field Addition | Field Removal | Type Change | Safety |
---|---|---|---|---|---|---|
Backward Compatibility | Compatible with previous versions | Producer update before consumer update | ✅ Optional fields only | ❌ Prohibited | ✅ Expandable types only | High |
Forward Compatibility | Compatible with future versions | Consumer update before producer update | ❌ Prohibited | ✅ Optional fields only | ✅ Reducible types only | High |
Full Compatibility | Bidirectional compatibility | Safest strategy | ✅ Optional fields only | ✅ Optional fields only | ✅ Compatible types only | Highest |
No Compatibility | No compatibility | Development environment or migration | ✅ All changes allowed | ✅ All changes allowed | ✅ All changes allowed | Low |
Schema Registry Compatibility Levels
Compatibility Level | Description | Usage | Update Order |
---|---|---|---|
BACKWARD | Compatible with previous versions | Consumer update before producer update | Consumer → Producer |
FORWARD | Compatible with future versions | Producer update before consumer update | Producer → Consumer |
FULL | Bidirectional compatibility | Safest strategy | Order independent |
NONE | No compatibility check | Development environment or migration | No restrictions |
Schema Validation Rules
Rule | Description | Example |
---|---|---|
Field Addition | New fields must be optional | "email": {"type": "string", "optional": true} |
Field Removal | Check compatibility when removing existing fields | Mark as deprecated then remove gradually |
Type Changes | Only allow compatible type changes | int32 → int64 (allowed), string → int (not allowed) |
Default Values | Set appropriate default values for new fields | "default": null or appropriate default value |
Schema Evolution Strategies
Strategy Type | Description | Examples | Handling |
---|---|---|---|
Additive Changes | Safe changes (maintain compatibility) | • Add new optional fields • Add new tables • Add enum values |
Can be applied immediately |
Breaking Changes | Compatibility-breaking changes | • Add required fields • Change field types • Remove fields • Remove enum values |
Handle with new schema version |
class SchemaCompatibilityStrategies:
def implement_schema_compatibility_strategies(self):
"""Implement schema compatibility strategies"""
# Schema Registry configuration
schema_registry_config = {
"url": "http://schema-registry:8081",
"compatibility_levels": {
"BACKWARD": "Compatible with previous versions (consumer update first)",
"FORWARD": "Compatible with future versions (producer update first)",
"FULL": "Bidirectional compatibility (safest)",
"NONE": "No compatibility check (development environment)"
},
"validation_rules": {
"field_addition": "New fields must be optional",
"field_removal": "Check compatibility when removing existing fields",
"type_changes": "Only allow compatible type changes",
"default_values": "Set appropriate default values for new fields"
}
}
return schema_registry_config
def validate_schema_compatibility(self, old_schema, new_schema):
"""Validate schema compatibility"""
compatibility_results = {
"is_compatible": True,
"compatibility_level": "UNKNOWN",
"issues": [],
"recommendations": []
}
# Field change validation
old_fields = set(old_schema.get("fields", {}).keys())
new_fields = set(new_schema.get("fields", {}).keys())
# Added field validation
added_fields = new_fields - old_fields
for field in added_fields:
field_def = new_schema["fields"][field]
if not field_def.get("optional", False):
compatibility_results["issues"].append(
f"New field '{field}' is required. Change to optional."
)
compatibility_results["is_compatible"] = False
# Removed field validation
removed_fields = old_fields - new_fields
if removed_fields:
compatibility_results["issues"].append(
f"Removed fields: {list(removed_fields)}. This is a breaking change."
)
compatibility_results["is_compatible"] = False
# Type change validation
common_fields = old_fields & new_fields
for field in common_fields:
old_type = old_schema["fields"][field].get("type")
new_type = new_schema["fields"][field].get("type")
if old_type != new_type:
if not self._is_type_compatible(old_type, new_type):
compatibility_results["issues"].append(
f"Field '{field}' type changed from {old_type} to {new_type}"
)
compatibility_results["is_compatible"] = False
# Determine compatibility level
if compatibility_results["is_compatible"]:
if added_fields and not removed_fields:
compatibility_results["compatibility_level"] = "BACKWARD"
elif removed_fields and not added_fields:
compatibility_results["compatibility_level"] = "FORWARD"
elif not added_fields and not removed_fields:
compatibility_results["compatibility_level"] = "FULL"
else:
compatibility_results["compatibility_level"] = "NONE"
# Generate recommendations
if not compatibility_results["is_compatible"]:
compatibility_results["recommendations"] = [
"Set new fields as optional",
"Consider marking as deprecated instead of removing fields",
"Convert to compatible types when changing field types",
"Create new schema version if necessary"
]
return compatibility_results
def _is_type_compatible(self, old_type, new_type):
"""Check type compatibility"""
compatible_types = {
"int32": ["int64", "float", "double"],
"int64": ["float", "double"],
"float": ["double"],
"string": ["bytes"],
"bytes": ["string"]
}
return new_type in compatible_types.get(old_type, [])
def create_schema_evolution_plan(self, current_schema, target_schema):
"""Create schema evolution plan"""
evolution_plan = {
"phases": [],
"estimated_duration": "unknown",
"risk_level": "low"
}
# Phase 1: Safe changes
safe_changes = []
old_fields = set(current_schema.get("fields", {}).keys())
new_fields = set(target_schema.get("fields", {}).keys())
added_fields = new_fields - old_fields
for field in added_fields:
if target_schema["fields"][field].get("optional", False):
safe_changes.append(f"Add field '{field}' (optional)")
if safe_changes:
evolution_plan["phases"].append({
"phase": 1,
"type": "safe_changes",
"description": "Safe changes (maintain compatibility)",
"changes": safe_changes,
"duration": "1-2 weeks"
})
# Phase 2: Breaking Changes (if needed)
breaking_changes = []
removed_fields = old_fields - new_fields
if removed_fields:
breaking_changes.append(f"Remove fields: {list(removed_fields)}")
evolution_plan["risk_level"] = "high"
if breaking_changes:
evolution_plan["phases"].append({
"phase": 2,
"type": "breaking_changes",
"description": "Breaking Changes (new version required)",
"changes": breaking_changes,
"duration": "2-4 weeks",
"notes": "Consumer update required"
})
return evolution_plan
🔄 Real-time Data Transformation and Routing
Data Transformation Pipeline
class DataTransformationPipeline:
def __init__(self):
self.transformation_configs = {}
def setup_single_message_transform(self, transform_config):
"""Setup Single Message Transform (SMT)"""
smt_config = {
"transforms": ",".join(transform_config["transforms"]),
# Record unwrapping
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.unwrap.delete.handling.mode": "drop",
"transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table",
"transforms.unwrap.add.headers": "op,source.ts_ms",
# Field name transformation
"transforms.rename.type": "org.apache.kafka.connect.transforms.ReplaceField$Value",
"transforms.rename.renames": ",".join(transform_config.get("field_renames", [])),
# Topic routing
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": transform_config["topic_regex"],
"transforms.route.replacement": transform_config["topic_replacement"],
# Filtering
"transforms.filter.type": "org.apache.kafka.connect.transforms.Filter",
"transforms.filter.condition": transform_config.get("filter_condition", ""),
# Field addition
"transforms.addfield.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.addfield.static.field": "processed_at",
"transforms.addfield.static.value": "$(date:yyyy-MM-dd'T'HH:mm:ss'Z')"
}
return smt_config
Topic Routing Strategies
Strategy | Description | Use Case | Configuration |
---|---|---|---|
Database-based | Route by database name | Multi-tenant applications | transforms.route.regex: "([^.]+)\\.([^.]+)\\.([^.]+)" |
Table-based | Route by table name | Service-specific topics | transforms.route.regex: "db\\.schema\\.([^.]+)" |
Operation-based | Route by operation type | Separate INSERT/UPDATE/DELETE | Custom SMT implementation |
Conditional | Route based on data conditions | Data classification | Filter + Router combination |
Data Enrichment Implementation
class DataEnrichmentProcessor:
def __init__(self):
self.enrichment_configs = {}
def setup_lookup_enrichment(self, lookup_config):
"""Setup lookup-based data enrichment"""
enrichment_config = {
"transforms": "lookup",
"transforms.lookup.type": "org.apache.kafka.connect.transforms.Lookup",
"transforms.lookup.lookup.table": lookup_config["lookup_table"],
"transforms.lookup.lookup.key": lookup_config["lookup_key"],
"transforms.lookup.lookup.value": lookup_config["lookup_value"]
}
return enrichment_config
def setup_calculation_enrichment(self, calc_config):
"""Setup calculation-based enrichment"""
enrichment_config = {
"transforms": "calculate",
"transforms.calculate.type": "org.apache.kafka.connect.transforms.Calculate",
"transforms.calculate.expression": calc_config["expression"],
"transforms.calculate.target.field": calc_config["target_field"]
}
return enrichment_config
🚀 Practical Project: Real-time Data Synchronization System
Project Overview
Build a real-time data synchronization system for a large-scale e-commerce platform. Capture changes from MySQL order database in real-time and synchronize to Elasticsearch search engine, Redis cache, and data lake.
Project Goals
- Real-time Data Sync: Achieve sub-second latency for order data synchronization
- Multi-target Support: Synchronize to Elasticsearch, Redis, and S3 Data Lake
- High Availability: Ensure 99.9% uptime with automatic failover
- Scalability: Handle 100,000+ orders per day with horizontal scaling
Technical Challenges
- Schema Evolution: Handle frequent schema changes in order system
- Data Consistency: Ensure eventual consistency across all targets
- Performance: Optimize throughput for high-volume order processing
- Monitoring: Comprehensive monitoring and alerting system
System Architecture
Component | Technology | Purpose | Configuration |
---|---|---|---|
Source Database | MySQL 8.0 | Order management system | • Binary logging enabled • GTID enabled • Read replicas configured |
Kafka Cluster | Apache Kafka 3.0 | Event streaming platform | • 3 brokers • Replication factor: 3 • Retention: 7 days |
Target Systems | Elasticsearch, Redis, S3 | Search, cache, analytics | • Elasticsearch cluster: 3 nodes • Redis cluster: 6 nodes • S3 with Parquet format |
1. System Configuration
class RealTimeSyncSystem:
def __init__(self):
self.system_config = {
"source_database": {
"type": "mysql",
"hostname": "mysql-orders-cluster",
"port": 3306,
"database": "ecommerce",
"username": "debezium_user",
"password": "secure_password",
"server_id": 184054
},
"kafka_cluster": {
"bootstrap_servers": "kafka-1:9092,kafka-2:9092,kafka-3:9092",
"schema_registry_url": "http://schema-registry:8081",
"replication_factor": 3,
"partitions": 12
},
"target_systems": {
"elasticsearch": {
"hosts": ["es-1:9200", "es-2:9200", "es-3:9200"],
"index_prefix": "orders_",
"batch_size": 1000
},
"redis": {
"host": "redis-cluster",
"port": 6379,
"db": 0,
"key_prefix": "order:"
},
"s3": {
"bucket": "ecommerce-data-lake",
"path_prefix": "orders/",
"format": "parquet",
"compression": "snappy"
}
}
}
def design_system_architecture(self):
"""Design the complete system architecture"""
architecture = {
"source_database": {
"mysql_orders": {
"tables": ["orders", "order_items", "customers", "products"],
"binlog_format": "ROW",
"gtid_mode": "ON",
"read_replicas": 2
}
},
"kafka_cluster": {
"topics": {
"orders.ecommerce.orders": {"partitions": 6, "replication_factor": 3},
"orders.ecommerce.order_items": {"partitions": 6, "replication_factor": 3},
"orders.ecommerce.customers": {"partitions": 3, "replication_factor": 3},
"orders.ecommerce.products": {"partitions": 3, "replication_factor": 3}
},
"connectors": {
"mysql_orders_connector": {
"tasks_max": 4,
"poll_interval_ms": 100,
"max_batch_size": 4096
}
}
},
"target_systems": {
"elasticsearch": {
"indices": {
"orders_read_model": {"shards": 3, "replicas": 1},
"customers_read_model": {"shards": 2, "replicas": 1}
}
},
"redis": {
"keys": {
"order_cache": {"ttl": 3600},
"customer_cache": {"ttl": 1800}
}
},
"s3": {
"partitions": ["year", "month", "day"],
"file_size": "128MB"
}
}
}
return architecture
2. System Deployment and Execution
def deploy_realtime_sync_system(self):
"""Deploy the complete real-time synchronization system"""
deployment_steps = [
{
"step": 1,
"name": "Deploy MySQL Connector",
"description": "Deploy Debezium MySQL connector for order database",
"configuration": {
"connector_name": "mysql-orders-connector",
"database_hostname": "mysql-orders-cluster",
"database_port": 3306,
"database_user": "debezium_user",
"database_password": "secure_password",
"database_server_id": 184054,
"topic_prefix": "orders.ecommerce",
"table_include_list": "ecommerce.orders,ecommerce.order_items,ecommerce.customers",
"transforms": "unwrap,route,addTimestamp",
"max_batch_size": 4096,
"poll_interval_ms": 100
}
},
{
"step": 2,
"name": "Configure Elasticsearch Sink",
"description": "Configure Elasticsearch sink connector for search optimization",
"configuration": {
"connector_name": "elasticsearch-sink-orders",
"topics": "orders.ecommerce.orders,orders.ecommerce.order_items",
"connection_url": "http://es-1:9200,http://es-2:9200,http://es-3:9200",
"type_name": "_doc",
"key_ignore": "false",
"schema_ignore": "true",
"batch_size": 1000,
"flush_timeout_ms": 5000
}
},
{
"step": 3,
"name": "Configure Redis Sink",
"description": "Configure Redis sink connector for caching",
"configuration": {
"connector_name": "redis-sink-orders",
"topics": "orders.ecommerce.orders",
"redis_host": "redis-cluster",
"redis_port": 6379,
"redis_database": 0,
"key_prefix": "order:",
"key_field": "id",
"ttl": 3600
}
},
{
"step": 4,
"name": "Configure S3 Sink",
"description": "Configure S3 sink connector for data lake storage",
"configuration": {
"connector_name": "s3-sink-orders",
"topics": "orders.ecommerce.orders,orders.ecommerce.order_items",
"s3_bucket_name": "ecommerce-data-lake",
"s3_region": "us-west-2",
"flush_size": 10000,
"rotate_interval_ms": 300000,
"format_class": "io.confluent.connect.s3.format.parquet.ParquetFormat",
"compression_type": "snappy",
"partitioner_class": "io.confluent.connect.storage.partitioner.TimeBasedPartitioner",
"path_format": "'year'=YYYY/'month'=MM/'day'=dd/"
}
}
]
return deployment_steps
3. Monitoring and Alerting Configuration
class MonitoringSystem:
def __init__(self):
self.monitoring_config = {}
def setup_monitoring_metrics(self):
"""Setup comprehensive monitoring metrics"""
monitoring_metrics = {
"kafka_connect_metrics": {
"connector_status": {
"metric_name": "kafka_connect_connector_status",
"alert_condition": "status != 'RUNNING'",
"severity": "critical"
},
"task_status": {
"metric_name": "kafka_connect_task_status",
"alert_condition": "status != 'RUNNING'",
"severity": "critical"
},
"throughput": {
"metric_name": "kafka_connect_source_record_poll_rate",
"alert_condition": "rate < 1000",
"severity": "warning"
},
"latency": {
"metric_name": "kafka_connect_source_record_poll_total",
"alert_condition": "latency > 5000ms",
"severity": "warning"
}
},
"debezium_metrics": {
"binlog_position": {
"metric_name": "debezium_mysql_binlog_position",
"alert_condition": "position_lag > 1000",
"severity": "warning"
},
"snapshot_progress": {
"metric_name": "debezium_mysql_snapshot_progress",
"alert_condition": "progress < 100% for 30min",
"severity": "warning"
},
"transaction_metrics": {
"metric_name": "debezium_mysql_transaction_count",
"alert_condition": "count = 0 for 10min",
"severity": "critical"
},
"error_metrics": {
"metric_name": "debezium_mysql_error_count",
"alert_condition": "count > 0",
"severity": "critical"
}
}
}
return monitoring_metrics
def setup_alerting_rules(self):
"""Setup alerting rules for the system"""
alerting_rules = {
"connector_failure": {
"condition": "kafka_connect_connector_status != 'RUNNING'",
"severity": "critical",
"notification_channels": ["slack", "email", "pagerduty"],
"message": "Kafka Connect connector is not running"
},
"high_latency": {
"condition": "kafka_connect_source_record_poll_latency > 5000ms",
"severity": "warning",
"notification_channels": ["slack"],
"message": "High latency detected in data processing"
},
"low_throughput": {
"condition": "kafka_connect_source_record_poll_rate < 1000 records/sec",
"severity": "warning",
"notification_channels": ["slack"],
"message": "Low throughput detected in data processing"
},
"snapshot_stalled": {
"condition": "debezium_mysql_snapshot_progress < 100% for 30min",
"severity": "warning",
"notification_channels": ["slack", "email"],
"message": "Debezium snapshot appears to be stalled"
}
}
return alerting_rules
def setup_dashboard_metrics(self):
"""Setup dashboard metrics for monitoring"""
dashboard_metrics = {
"system_overview": {
"connector_health": "kafka_connect_connector_status",
"task_health": "kafka_connect_task_status",
"total_throughput": "kafka_connect_source_record_poll_rate",
"average_latency": "kafka_connect_source_record_poll_latency"
},
"per_connector": {
"records_processed": "kafka_connect_source_record_poll_total",
"records_failed": "kafka_connect_source_record_poll_errors",
"connector_uptime": "kafka_connect_connector_uptime",
"last_poll_time": "kafka_connect_source_record_poll_time"
},
"target_system_health": {
"elasticsearch_indexing_rate": "elasticsearch_documents_indexed_rate",
"redis_operations_rate": "redis_commands_processed_rate",
"s3_upload_rate": "s3_objects_uploaded_rate"
}
}
return dashboard_metrics
📚 Learning Summary
What We Learned in This Part
- Change Data Capture Fundamentals
- CDC concepts and importance
- Comparison with batch processing
- ROI evaluation and tool selection
- Debezium Architecture and Core Features
- Debezium platform architecture
- Database-specific change detection mechanisms
- Event streaming patterns (Event Sourcing, CQRS, Saga)
- Debezium Connector Configuration and Operations
- MySQL, PostgreSQL, MongoDB connector setup
- Advanced configuration for performance optimization
- Connector management and monitoring
- Schema Evolution and Schema Registry
- Schema evolution concepts and importance
- Schema Registry integration
- Compatibility strategies and validation
- Real-time Data Transformation and Routing
- Single Message Transform (SMT) utilization
- Custom transformation logic implementation
- Topic routing strategies
- Practical Project
- Large-scale e-commerce platform real-time synchronization system
- MySQL → Elasticsearch/Redis/Data Lake pipeline
- Monitoring and alerting system
Core Technology Stack
Technology | Purpose | Importance |
---|---|---|
Debezium | CDC Platform | ⭐⭐⭐⭐⭐ |
Apache Kafka | Event Streaming | ⭐⭐⭐⭐⭐ |
Kafka Connect | Connector Framework | ⭐⭐⭐⭐ |
Schema Registry | Schema Management | ⭐⭐⭐⭐ |
Elasticsearch | Search Engine | ⭐⭐⭐⭐ |
Next Part Preview
Part 2: Kafka Connect and Production CDC Operations will cover:
- Advanced Kafka Connect architecture and scalability
- Custom connector development
- Large-scale CDC pipeline operation strategies
- Performance optimization and bottleneck resolution
- Data consistency assurance and validation
- Monitoring and disaster recovery strategies
- Enterprise-grade CDC operation system construction
Series Progress: Change Data Capture Complete Guide Series
Build modern event-driven architecture with the power of real-time data synchronization! 🚀