Part 1: Change Data Capture and Debezium Practical Implementation - Complete Real-time Data Synchronization

From CDC core concepts to building real-time data synchronization systems with Debezium, a complete guide to event-driven architecture.

📋 Table of Contents

  1. Change Data Capture Basic Concepts
  2. Debezium Architecture and Core Features
  3. Debezium Connector Configuration and Operations
  4. Schema Evolution and Schema Registry
  5. Real-time Data Transformation and Routing
  6. Practical Project: Real-time Data Synchronization System
  7. Learning Summary

🔄 Change Data Capture Basic Concepts

What is CDC?

Change Data Capture (CDC) is a technology that detects and captures database changes in real-time and propagates them to other systems. It overcomes the limitations of traditional batch processing and enables real-time data synchronization.

Traditional Batch Processing vs CDC

Characteristics Batch Processing CDC Approach
Latency High (hours/days) Low (seconds/minutes)
Throughput High (bulk processing) Medium (real-time stream)
Complexity Low High
Consistency Eventually consistent Strong consistency possible
Resource Usage Periodically high Continuously medium
Real-time Processing Impossible Possible
Main Use Cases • ETL pipelines
• Data warehouse construction
• Daily/weekly reports
• Large-scale data migration
• Real-time analytics
• Event-driven architecture
• Data lake real-time sync
• Microservice data synchronization

CDC Adoption ROI Evaluation

Evaluation Criteria Score Conditions Description
Business Requirements 9 Real-time data processing required Essential for competitive advantage
Technical Infrastructure 8 Kafka ecosystem available Strong foundation for implementation
Team Expertise 7 Experience with streaming technologies Requires learning investment
Data Volume 9 High-frequency changes CDC provides significant benefits
Compliance Requirements 8 Audit trail and data lineage needed CDC ensures complete change tracking
System Integration 8 Multiple downstream systems CDC reduces integration complexity

ROI Recommendation

Total Score Recommendation Priority
49/60 Highly Recommended High Priority

CDC Tool Selection Criteria

Conditions Recommended Tool Reason
Open source preferred Debezium Most mature open-source CDC solution
Cloud-native required AWS DMS Fully managed service
High performance needed Maxwell Optimized for MySQL
Enterprise features required Confluent Platform Comprehensive enterprise solution

Selection Criteria Weights

Criteria Weight
Performance 25%
Reliability 20%
Community Support 15%
Documentation 15%
Cost 10%
Ease of Use 10%
Integration 5%

🏗️ Debezium Architecture and Core Features

Debezium Architecture Overview

Debezium is built on Apache Kafka and Kafka Connect, providing a distributed platform for capturing database changes.

Core Components

Debezium consists of several key components that work together to provide reliable change data capture:

  • Debezium Connectors: Database-specific connectors that capture changes
  • Kafka Connect Framework: Provides the infrastructure for running connectors
  • Schema Registry: Manages schema evolution and compatibility
  • Kafka Brokers: Distribute change events across the cluster
  • Consumer Applications: Process and react to change events

Database-Specific Change Detection Mechanisms

Database Mechanism Advantages Limitations
MySQL Binary Log (Binlog) • High performance
• Complete change history
• Minimal impact on DB
• Requires binary logging enabled
• Binlog retention management
PostgreSQL Write-Ahead Log (WAL) • ACID compliance
• Logical replication
• Real-time streaming
• WAL segment management
• Replication slot monitoring
MongoDB Oplog • Native change stream
• Automatic failover
• Sharded cluster support
• Oplog size limitations
• Memory usage considerations

Event Streaming Patterns

Pattern Description Use Case Implementation
Event Sourcing Store all changes as events Audit trails, replay capabilities Event store with Kafka topics
CQRS Separate read and write models High-performance read operations Write model via CDC, read model via projections
Saga Distributed transaction management Microservice coordination Event-driven transaction coordination
class EventStreamingPatterns:
    def implement_event_sourcing_pattern(self):
        """Event Sourcing pattern implementation example"""
        
        # Event store configuration
        event_store_config = {
            "kafka_topics": {
                "order_events": "orders.ecommerce.orders",
                "customer_events": "orders.ecommerce.customers",
                "product_events": "orders.ecommerce.products"
            },
            "event_serialization": "Avro",
            "snapshot_frequency": "every_1000_events",
            "retention_policy": "7_days"
        }
        
        # Event replay example
        def replay_events_for_state(self, entity_id, from_timestamp):
            """Restore entity state by replaying events"""
            events = self.get_events(entity_id, from_timestamp)
            state = {}
            for event in events:
                state = self.apply_event(state, event)
            return state
        
        return event_store_config
    
    def implement_cqrs_pattern(self):
        """CQRS pattern implementation example"""
        
        # Command side (Write Model)
        command_side_config = {
            "write_model": {
                "database": "mysql_orders",
                "tables": ["orders", "order_items"],
                "optimization": "for_writes"
            },
            "event_publishing": {
                "debezium_connector": "mysql-orders-connector",
                "topics": ["orders.ecommerce.orders"]
            }
        }
        
        # Query side (Read Model)
        query_side_config = {
            "read_models": {
                "elasticsearch": {
                    "indexes": ["orders_read_model", "customers_read_model"],
                    "optimization": "for_reads",
                    "projections": ["order_summary", "customer_profile"]
                },
                "redis": {
                    "caches": ["order_cache", "customer_cache"],
                    "ttl": "1_hour"
                }
            }
        }
        
        return {
            "command_side": command_side_config,
            "query_side": query_side_config
        }
    
    def implement_saga_pattern(self):
        """Saga pattern implementation example"""
        
        # Choreography pattern
        choreography_saga = {
            "order_processing_saga": {
                "steps": [
                    {
                        "service": "order_service",
                        "action": "create_order",
                        "compensation": "cancel_order",
                        "event": "OrderCreated"
                    },
                    {
                        "service": "inventory_service", 
                        "action": "reserve_inventory",
                        "compensation": "release_inventory",
                        "event": "InventoryReserved"
                    },
                    {
                        "service": "payment_service",
                        "action": "process_payment",
                        "compensation": "refund_payment",
                        "event": "PaymentProcessed"
                    }
                ],
                "compensation_strategy": "reverse_order"
            }
        }
        
        # Orchestration pattern
        orchestration_saga = {
            "saga_orchestrator": {
                "state_machine": {
                    "states": ["STARTED", "INVENTORY_RESERVED", "PAYMENT_PROCESSED", "COMPLETED"],
                    "transitions": {
                        "STARTED": "INVENTORY_RESERVED",
                        "INVENTORY_RESERVED": "PAYMENT_PROCESSED",
                        "PAYMENT_PROCESSED": "COMPLETED"
                    },
                    "compensation_states": ["INVENTORY_RELEASED", "PAYMENT_REFUNDED", "CANCELLED"]
                }
            }
        }
        
        return {
            "choreography": choreography_saga,
            "orchestration": orchestration_saga
        }

⚙️ Debezium Connector Configuration and Operations

MySQL Connector Advanced Configuration

class DebeziumConnectorManager:
    def __init__(self):
        self.kafka_connect_url = "http://kafka-connect:8083"
        self.connector_configs = {}
    
    def configure_mysql_connector(self, database_config):
        """Configure MySQL connector with advanced settings"""
        
        mysql_connector_config = {
            "name": f"mysql-{database_config['database_name']}-connector",
            "config": {
                "connector.class": "io.debezium.connector.mysql.MySqlConnector",
                "database.hostname": database_config["hostname"],
                "database.port": str(database_config["port"]),
                "database.user": database_config["username"],
                "database.password": database_config["password"],
                "database.server.id": str(database_config["server_id"]),
                "topic.prefix": f"{database_config['database_name']}.{database_config['schema_name']}",
                
                # Table filtering
                "table.include.list": ",".join(database_config["include_tables"]),
                "database.include.list": database_config["database_name"],
                
                # Performance optimization
                "binlog.buffer.size": "32768",
                "max.batch.size": "4096",
                "max.queue.size": "16384",
                "poll.interval.ms": "100",
                
                # Schema management
                "schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
                "schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
                "include.schema.changes": "true",
                
                # Data transformation
                "transforms": "unwrap,route,addTimestamp",
                "transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
                "transforms.unwrap.drop.tombstones": "false",
                "transforms.unwrap.delete.handling.mode": "drop",
                "transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table",
                
                # Topic routing
                "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
                "transforms.route.regex": f"{database_config['database_name']}\\.{database_config['schema_name']}\\.([^.]+)",
                "transforms.route.replacement": f"{database_config['database_name']}.$1",
                
                # Field addition
                "transforms.addTimestamp.type": "org.apache.kafka.connect.transforms.InsertField$Value",
                "transforms.addTimestamp.static.field": "processed_at",
                "transforms.addTimestamp.static.value": "$(date:yyyy-MM-dd'T'HH:mm:ss'Z')",
                
                # Transaction metadata
                "provide.transaction.metadata": "true",
                "transaction.topic": f"transactions.{database_config['database_name']}"
            }
        }
        
        return mysql_connector_config

PostgreSQL Connector Configuration

def configure_postgresql_connector(self, database_config):
    """Configure PostgreSQL connector with WAL settings"""
    
    postgresql_connector_config = {
        "name": f"postgresql-{database_config['database_name']}-connector",
        "config": {
            "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
            "database.hostname": database_config["hostname"],
            "database.port": str(database_config["port"]),
            "database.user": database_config["username"],
            "database.password": database_config["password"],
            "database.dbname": database_config["database_name"],
            "database.server.name": f"{database_config['database_name']}_server",
            
            # WAL configuration
            "slot.name": f"debezium_{database_config['database_name']}",
            "publication.name": f"debezium_publication_{database_config['database_name']}",
            "plugin.name": "pgoutput",
            
            # Table filtering
            "table.include.list": ",".join(database_config["include_tables"]),
            "schema.include.list": database_config["schema_name"],
            
            # Performance settings
            "max.queue.size": "8192",
            "max.batch.size": "2048",
            "poll.interval.ms": "1000",
            
            # Schema management
            "schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
            "schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
            "include.schema.changes": "true"
        }
    }
    
    return postgresql_connector_config

MongoDB Connector Configuration

def configure_mongodb_connector(self, database_config):
    """Configure MongoDB connector with replica set settings"""
    
    mongodb_connector_config = {
        "name": f"mongodb-{database_config['database_name']}-connector",
        "config": {
            "connector.class": "io.debezium.connector.mongodb.MongoDbConnector",
            "mongodb.hosts": database_config["connection_string"],
            "mongodb.user": database_config["username"],
            "mongodb.password": database_config["password"],
            "mongodb.name": database_config["database_name"],
            
            # Collection filtering
            "collection.include.list": ",".join(database_config["include_collections"]),
            "database.include.list": database_config["database_name"],
            
            # Oplog settings
            "mongodb.poll.interval.ms": "1000",
            "mongodb.connect.timeout.ms": "30000",
            "mongodb.socket.timeout.ms": "30000",
            
            # Schema management
            "schema.history.internal.kafka.bootstrap.servers": "kafka:9092",
            "schema.history.internal.kafka.topic": f"schema-changes.{database_config['database_name']}",
            "include.schema.changes": "true"
        }
    }
    
    return mongodb_connector_config

Connector Management Operations

class ConnectorOperations:
    def __init__(self, kafka_connect_url):
        self.kafka_connect_url = kafka_connect_url
    
    def deploy_connector(self, connector_config):
        """Deploy a new connector"""
        
        import requests
        import json
        
        response = requests.post(
            f"{self.kafka_connect_url}/connectors",
            headers={"Content-Type": "application/json"},
            data=json.dumps(connector_config)
        )
        
        if response.status_code == 201:
            print(f"✅ Connector '{connector_config['name']}' deployed successfully")
            return response.json()
        else:
            print(f"❌ Failed to deploy connector: {response.text}")
            return None
    
    def get_connector_status(self, connector_name):
        """Get connector status and health"""
        
        import requests
        
        response = requests.get(f"{self.kafka_connect_url}/connectors/{connector_name}/status")
        
        if response.status_code == 200:
            status = response.json()
            return {
                "name": status["name"],
                "state": status["connector"]["state"],
                "tasks": [
                    {
                        "id": task["id"],
                        "state": task["state"],
                        "worker_id": task["worker_id"]
                    }
                    for task in status["tasks"]
                ]
            }
        else:
            print(f"❌ Failed to get connector status: {response.text}")
            return None
    
    def restart_connector(self, connector_name):
        """Restart a connector"""
        
        import requests
        
        response = requests.post(f"{self.kafka_connect_url}/connectors/{connector_name}/restart")
        
        if response.status_code == 204:
            print(f"✅ Connector '{connector_name}' restarted successfully")
            return True
        else:
            print(f"❌ Failed to restart connector: {response.text}")
            return False

📊 Schema Evolution and Schema Registry

Schema Evolution Concept

Schema evolution is the ability to modify database schemas over time while maintaining backward and forward compatibility. This is crucial for long-running CDC systems where the source schema may change.

Importance of Schema Evolution

  • Backward Compatibility: New consumers can read data written by old producers
  • Forward Compatibility: Old consumers can read data written by new producers
  • Gradual Deployment: Allows phased rollout of schema changes
  • Data Consistency: Ensures data integrity across schema versions

Schema Registry Integration

class SchemaRegistryManager:
    def __init__(self, registry_url):
        self.registry_url = registry_url
    
    def configure_schema_registry(self, registry_config):
        """Configure Schema Registry for Debezium"""
        
        schema_registry_config = {
            "schema_registry_url": registry_config["url"],
            "key.converter": "io.confluent.connect.avro.AvroConverter",
            "key.converter.schema.registry.url": registry_config["url"],
            "value.converter": "io.confluent.connect.avro.AvroConverter",
            "value.converter.schema.registry.url": registry_config["url"],
            "value.converter.auto.register.schemas": "true",
            "value.converter.use.latest.version": "true",
            "transforms": "unwrap",
            "transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
            "transforms.unwrap.drop.tombstones": "false",
            "transforms.unwrap.delete.handling.mode": "drop",
            "transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table"
        }
        
        return schema_registry_config

Schema Evolution Scenarios

Scenario Description Compatibility Handling Example
Column Addition Add new column FORWARD New column handled as null or default value ALTER TABLE users ADD COLUMN phone VARCHAR(20)
Column Deletion Drop column BACKWARD Remove column from existing data ALTER TABLE users DROP COLUMN old_field
Column Rename Rename column NONE Add new column then remove old column ALTER TABLE users RENAME COLUMN old_name TO new_name
Column Type Change Change column type FORWARD_TRANSITIVE Convert after type compatibility check ALTER TABLE users MODIFY COLUMN age INT
Table Addition Add new table FORWARD Automatically create new topic CREATE TABLE new_table (...)
Table Deletion Drop table BACKWARD Keep existing topic but stop new events DROP TABLE old_table

Schema Compatibility Strategies

Strategy Description Use Case Field Addition Field Removal Type Change Safety
Backward Compatibility Compatible with previous versions Producer update before consumer update ✅ Optional fields only ❌ Prohibited ✅ Expandable types only High
Forward Compatibility Compatible with future versions Consumer update before producer update ❌ Prohibited ✅ Optional fields only ✅ Reducible types only High
Full Compatibility Bidirectional compatibility Safest strategy ✅ Optional fields only ✅ Optional fields only ✅ Compatible types only Highest
No Compatibility No compatibility Development environment or migration ✅ All changes allowed ✅ All changes allowed ✅ All changes allowed Low

Schema Registry Compatibility Levels

Compatibility Level Description Usage Update Order
BACKWARD Compatible with previous versions Consumer update before producer update Consumer → Producer
FORWARD Compatible with future versions Producer update before consumer update Producer → Consumer
FULL Bidirectional compatibility Safest strategy Order independent
NONE No compatibility check Development environment or migration No restrictions

Schema Validation Rules

Rule Description Example
Field Addition New fields must be optional "email": {"type": "string", "optional": true}
Field Removal Check compatibility when removing existing fields Mark as deprecated then remove gradually
Type Changes Only allow compatible type changes int32 → int64 (allowed), string → int (not allowed)
Default Values Set appropriate default values for new fields "default": null or appropriate default value

Schema Evolution Strategies

Strategy Type Description Examples Handling
Additive Changes Safe changes (maintain compatibility) • Add new optional fields
• Add new tables
• Add enum values
Can be applied immediately
Breaking Changes Compatibility-breaking changes • Add required fields
• Change field types
• Remove fields
• Remove enum values
Handle with new schema version
class SchemaCompatibilityStrategies:
    def implement_schema_compatibility_strategies(self):
        """Implement schema compatibility strategies"""
        
        # Schema Registry configuration
        schema_registry_config = {
            "url": "http://schema-registry:8081",
            "compatibility_levels": {
                "BACKWARD": "Compatible with previous versions (consumer update first)",
                "FORWARD": "Compatible with future versions (producer update first)", 
                "FULL": "Bidirectional compatibility (safest)",
                "NONE": "No compatibility check (development environment)"
            },
            "validation_rules": {
                "field_addition": "New fields must be optional",
                "field_removal": "Check compatibility when removing existing fields",
                "type_changes": "Only allow compatible type changes",
                "default_values": "Set appropriate default values for new fields"
            }
        }
        
        return schema_registry_config
    
    def validate_schema_compatibility(self, old_schema, new_schema):
        """Validate schema compatibility"""
        
        compatibility_results = {
            "is_compatible": True,
            "compatibility_level": "UNKNOWN",
            "issues": [],
            "recommendations": []
        }
        
        # Field change validation
        old_fields = set(old_schema.get("fields", {}).keys())
        new_fields = set(new_schema.get("fields", {}).keys())
        
        # Added field validation
        added_fields = new_fields - old_fields
        for field in added_fields:
            field_def = new_schema["fields"][field]
            if not field_def.get("optional", False):
                compatibility_results["issues"].append(
                    f"New field '{field}' is required. Change to optional."
                )
                compatibility_results["is_compatible"] = False
        
        # Removed field validation
        removed_fields = old_fields - new_fields
        if removed_fields:
            compatibility_results["issues"].append(
                f"Removed fields: {list(removed_fields)}. This is a breaking change."
            )
            compatibility_results["is_compatible"] = False
        
        # Type change validation
        common_fields = old_fields & new_fields
        for field in common_fields:
            old_type = old_schema["fields"][field].get("type")
            new_type = new_schema["fields"][field].get("type")
            
            if old_type != new_type:
                if not self._is_type_compatible(old_type, new_type):
                    compatibility_results["issues"].append(
                        f"Field '{field}' type changed from {old_type} to {new_type}"
                    )
                    compatibility_results["is_compatible"] = False
        
        # Determine compatibility level
        if compatibility_results["is_compatible"]:
            if added_fields and not removed_fields:
                compatibility_results["compatibility_level"] = "BACKWARD"
            elif removed_fields and not added_fields:
                compatibility_results["compatibility_level"] = "FORWARD"
            elif not added_fields and not removed_fields:
                compatibility_results["compatibility_level"] = "FULL"
        else:
            compatibility_results["compatibility_level"] = "NONE"
        
        # Generate recommendations
        if not compatibility_results["is_compatible"]:
            compatibility_results["recommendations"] = [
                "Set new fields as optional",
                "Consider marking as deprecated instead of removing fields",
                "Convert to compatible types when changing field types",
                "Create new schema version if necessary"
            ]
        
        return compatibility_results
    
    def _is_type_compatible(self, old_type, new_type):
        """Check type compatibility"""
        compatible_types = {
            "int32": ["int64", "float", "double"],
            "int64": ["float", "double"],
            "float": ["double"],
            "string": ["bytes"],
            "bytes": ["string"]
        }
        
        return new_type in compatible_types.get(old_type, [])
    
    def create_schema_evolution_plan(self, current_schema, target_schema):
        """Create schema evolution plan"""
        
        evolution_plan = {
            "phases": [],
            "estimated_duration": "unknown",
            "risk_level": "low"
        }
        
        # Phase 1: Safe changes
        safe_changes = []
        old_fields = set(current_schema.get("fields", {}).keys())
        new_fields = set(target_schema.get("fields", {}).keys())
        
        added_fields = new_fields - old_fields
        for field in added_fields:
            if target_schema["fields"][field].get("optional", False):
                safe_changes.append(f"Add field '{field}' (optional)")
        
        if safe_changes:
            evolution_plan["phases"].append({
                "phase": 1,
                "type": "safe_changes",
                "description": "Safe changes (maintain compatibility)",
                "changes": safe_changes,
                "duration": "1-2 weeks"
            })
        
        # Phase 2: Breaking Changes (if needed)
        breaking_changes = []
        removed_fields = old_fields - new_fields
        if removed_fields:
            breaking_changes.append(f"Remove fields: {list(removed_fields)}")
            evolution_plan["risk_level"] = "high"
        
        if breaking_changes:
            evolution_plan["phases"].append({
                "phase": 2,
                "type": "breaking_changes",
                "description": "Breaking Changes (new version required)",
                "changes": breaking_changes,
                "duration": "2-4 weeks",
                "notes": "Consumer update required"
            })
        
        return evolution_plan

🔄 Real-time Data Transformation and Routing

Data Transformation Pipeline

class DataTransformationPipeline:
    def __init__(self):
        self.transformation_configs = {}
    
    def setup_single_message_transform(self, transform_config):
        """Setup Single Message Transform (SMT)"""
        
        smt_config = {
            "transforms": ",".join(transform_config["transforms"]),
            
            # Record unwrapping
            "transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
            "transforms.unwrap.drop.tombstones": "false",
            "transforms.unwrap.delete.handling.mode": "drop",
            "transforms.unwrap.add.fields": "op,ts_ms,source.ts_ms,source.db,source.table",
            "transforms.unwrap.add.headers": "op,source.ts_ms",
            
            # Field name transformation
            "transforms.rename.type": "org.apache.kafka.connect.transforms.ReplaceField$Value",
            "transforms.rename.renames": ",".join(transform_config.get("field_renames", [])),
            
            # Topic routing
            "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
            "transforms.route.regex": transform_config["topic_regex"],
            "transforms.route.replacement": transform_config["topic_replacement"],
            
            # Filtering
            "transforms.filter.type": "org.apache.kafka.connect.transforms.Filter",
            "transforms.filter.condition": transform_config.get("filter_condition", ""),
            
            # Field addition
            "transforms.addfield.type": "org.apache.kafka.connect.transforms.InsertField$Value",
            "transforms.addfield.static.field": "processed_at",
            "transforms.addfield.static.value": "$(date:yyyy-MM-dd'T'HH:mm:ss'Z')"
        }
        
        return smt_config

Topic Routing Strategies

Strategy Description Use Case Configuration
Database-based Route by database name Multi-tenant applications transforms.route.regex: "([^.]+)\\.([^.]+)\\.([^.]+)"
Table-based Route by table name Service-specific topics transforms.route.regex: "db\\.schema\\.([^.]+)"
Operation-based Route by operation type Separate INSERT/UPDATE/DELETE Custom SMT implementation
Conditional Route based on data conditions Data classification Filter + Router combination

Data Enrichment Implementation

class DataEnrichmentProcessor:
    def __init__(self):
        self.enrichment_configs = {}
    
    def setup_lookup_enrichment(self, lookup_config):
        """Setup lookup-based data enrichment"""
        
        enrichment_config = {
            "transforms": "lookup",
            "transforms.lookup.type": "org.apache.kafka.connect.transforms.Lookup",
            "transforms.lookup.lookup.table": lookup_config["lookup_table"],
            "transforms.lookup.lookup.key": lookup_config["lookup_key"],
            "transforms.lookup.lookup.value": lookup_config["lookup_value"]
        }
        
        return enrichment_config
    
    def setup_calculation_enrichment(self, calc_config):
        """Setup calculation-based enrichment"""
        
        enrichment_config = {
            "transforms": "calculate",
            "transforms.calculate.type": "org.apache.kafka.connect.transforms.Calculate",
            "transforms.calculate.expression": calc_config["expression"],
            "transforms.calculate.target.field": calc_config["target_field"]
        }
        
        return enrichment_config

🚀 Practical Project: Real-time Data Synchronization System

Project Overview

Build a real-time data synchronization system for a large-scale e-commerce platform. Capture changes from MySQL order database in real-time and synchronize to Elasticsearch search engine, Redis cache, and data lake.

Project Goals

  • Real-time Data Sync: Achieve sub-second latency for order data synchronization
  • Multi-target Support: Synchronize to Elasticsearch, Redis, and S3 Data Lake
  • High Availability: Ensure 99.9% uptime with automatic failover
  • Scalability: Handle 100,000+ orders per day with horizontal scaling

Technical Challenges

  • Schema Evolution: Handle frequent schema changes in order system
  • Data Consistency: Ensure eventual consistency across all targets
  • Performance: Optimize throughput for high-volume order processing
  • Monitoring: Comprehensive monitoring and alerting system

System Architecture

Component Technology Purpose Configuration
Source Database MySQL 8.0 Order management system • Binary logging enabled
• GTID enabled
• Read replicas configured
Kafka Cluster Apache Kafka 3.0 Event streaming platform • 3 brokers
• Replication factor: 3
• Retention: 7 days
Target Systems Elasticsearch, Redis, S3 Search, cache, analytics • Elasticsearch cluster: 3 nodes
• Redis cluster: 6 nodes
• S3 with Parquet format

1. System Configuration

class RealTimeSyncSystem:
    def __init__(self):
        self.system_config = {
            "source_database": {
                "type": "mysql",
                "hostname": "mysql-orders-cluster",
                "port": 3306,
                "database": "ecommerce",
                "username": "debezium_user",
                "password": "secure_password",
                "server_id": 184054
            },
            "kafka_cluster": {
                "bootstrap_servers": "kafka-1:9092,kafka-2:9092,kafka-3:9092",
                "schema_registry_url": "http://schema-registry:8081",
                "replication_factor": 3,
                "partitions": 12
            },
            "target_systems": {
                "elasticsearch": {
                    "hosts": ["es-1:9200", "es-2:9200", "es-3:9200"],
                    "index_prefix": "orders_",
                    "batch_size": 1000
                },
                "redis": {
                    "host": "redis-cluster",
                    "port": 6379,
                    "db": 0,
                    "key_prefix": "order:"
                },
                "s3": {
                    "bucket": "ecommerce-data-lake",
                    "path_prefix": "orders/",
                    "format": "parquet",
                    "compression": "snappy"
                }
            }
        }
    
    def design_system_architecture(self):
        """Design the complete system architecture"""
        
        architecture = {
            "source_database": {
                "mysql_orders": {
                    "tables": ["orders", "order_items", "customers", "products"],
                    "binlog_format": "ROW",
                    "gtid_mode": "ON",
                    "read_replicas": 2
                }
            },
            "kafka_cluster": {
                "topics": {
                    "orders.ecommerce.orders": {"partitions": 6, "replication_factor": 3},
                    "orders.ecommerce.order_items": {"partitions": 6, "replication_factor": 3},
                    "orders.ecommerce.customers": {"partitions": 3, "replication_factor": 3},
                    "orders.ecommerce.products": {"partitions": 3, "replication_factor": 3}
                },
                "connectors": {
                    "mysql_orders_connector": {
                        "tasks_max": 4,
                        "poll_interval_ms": 100,
                        "max_batch_size": 4096
                    }
                }
            },
            "target_systems": {
                "elasticsearch": {
                    "indices": {
                        "orders_read_model": {"shards": 3, "replicas": 1},
                        "customers_read_model": {"shards": 2, "replicas": 1}
                    }
                },
                "redis": {
                    "keys": {
                        "order_cache": {"ttl": 3600},
                        "customer_cache": {"ttl": 1800}
                    }
                },
                "s3": {
                    "partitions": ["year", "month", "day"],
                    "file_size": "128MB"
                }
            }
        }
        
        return architecture

2. System Deployment and Execution

def deploy_realtime_sync_system(self):
    """Deploy the complete real-time synchronization system"""
    
    deployment_steps = [
        {
            "step": 1,
            "name": "Deploy MySQL Connector",
            "description": "Deploy Debezium MySQL connector for order database",
            "configuration": {
                "connector_name": "mysql-orders-connector",
                "database_hostname": "mysql-orders-cluster",
                "database_port": 3306,
                "database_user": "debezium_user",
                "database_password": "secure_password",
                "database_server_id": 184054,
                "topic_prefix": "orders.ecommerce",
                "table_include_list": "ecommerce.orders,ecommerce.order_items,ecommerce.customers",
                "transforms": "unwrap,route,addTimestamp",
                "max_batch_size": 4096,
                "poll_interval_ms": 100
            }
        },
        {
            "step": 2,
            "name": "Configure Elasticsearch Sink",
            "description": "Configure Elasticsearch sink connector for search optimization",
            "configuration": {
                "connector_name": "elasticsearch-sink-orders",
                "topics": "orders.ecommerce.orders,orders.ecommerce.order_items",
                "connection_url": "http://es-1:9200,http://es-2:9200,http://es-3:9200",
                "type_name": "_doc",
                "key_ignore": "false",
                "schema_ignore": "true",
                "batch_size": 1000,
                "flush_timeout_ms": 5000
            }
        },
        {
            "step": 3,
            "name": "Configure Redis Sink",
            "description": "Configure Redis sink connector for caching",
            "configuration": {
                "connector_name": "redis-sink-orders",
                "topics": "orders.ecommerce.orders",
                "redis_host": "redis-cluster",
                "redis_port": 6379,
                "redis_database": 0,
                "key_prefix": "order:",
                "key_field": "id",
                "ttl": 3600
            }
        },
        {
            "step": 4,
            "name": "Configure S3 Sink",
            "description": "Configure S3 sink connector for data lake storage",
            "configuration": {
                "connector_name": "s3-sink-orders",
                "topics": "orders.ecommerce.orders,orders.ecommerce.order_items",
                "s3_bucket_name": "ecommerce-data-lake",
                "s3_region": "us-west-2",
                "flush_size": 10000,
                "rotate_interval_ms": 300000,
                "format_class": "io.confluent.connect.s3.format.parquet.ParquetFormat",
                "compression_type": "snappy",
                "partitioner_class": "io.confluent.connect.storage.partitioner.TimeBasedPartitioner",
                "path_format": "'year'=YYYY/'month'=MM/'day'=dd/"
            }
        }
    ]
    
    return deployment_steps

3. Monitoring and Alerting Configuration

class MonitoringSystem:
    def __init__(self):
        self.monitoring_config = {}
    
    def setup_monitoring_metrics(self):
        """Setup comprehensive monitoring metrics"""
        
        monitoring_metrics = {
            "kafka_connect_metrics": {
                "connector_status": {
                    "metric_name": "kafka_connect_connector_status",
                    "alert_condition": "status != 'RUNNING'",
                    "severity": "critical"
                },
                "task_status": {
                    "metric_name": "kafka_connect_task_status",
                    "alert_condition": "status != 'RUNNING'",
                    "severity": "critical"
                },
                "throughput": {
                    "metric_name": "kafka_connect_source_record_poll_rate",
                    "alert_condition": "rate < 1000",
                    "severity": "warning"
                },
                "latency": {
                    "metric_name": "kafka_connect_source_record_poll_total",
                    "alert_condition": "latency > 5000ms",
                    "severity": "warning"
                }
            },
            "debezium_metrics": {
                "binlog_position": {
                    "metric_name": "debezium_mysql_binlog_position",
                    "alert_condition": "position_lag > 1000",
                    "severity": "warning"
                },
                "snapshot_progress": {
                    "metric_name": "debezium_mysql_snapshot_progress",
                    "alert_condition": "progress < 100% for 30min",
                    "severity": "warning"
                },
                "transaction_metrics": {
                    "metric_name": "debezium_mysql_transaction_count",
                    "alert_condition": "count = 0 for 10min",
                    "severity": "critical"
                },
                "error_metrics": {
                    "metric_name": "debezium_mysql_error_count",
                    "alert_condition": "count > 0",
                    "severity": "critical"
                }
            }
        }
        
        return monitoring_metrics
    
    def setup_alerting_rules(self):
        """Setup alerting rules for the system"""
        
        alerting_rules = {
            "connector_failure": {
                "condition": "kafka_connect_connector_status != 'RUNNING'",
                "severity": "critical",
                "notification_channels": ["slack", "email", "pagerduty"],
                "message": "Kafka Connect connector is not running"
            },
            "high_latency": {
                "condition": "kafka_connect_source_record_poll_latency > 5000ms",
                "severity": "warning",
                "notification_channels": ["slack"],
                "message": "High latency detected in data processing"
            },
            "low_throughput": {
                "condition": "kafka_connect_source_record_poll_rate < 1000 records/sec",
                "severity": "warning",
                "notification_channels": ["slack"],
                "message": "Low throughput detected in data processing"
            },
            "snapshot_stalled": {
                "condition": "debezium_mysql_snapshot_progress < 100% for 30min",
                "severity": "warning",
                "notification_channels": ["slack", "email"],
                "message": "Debezium snapshot appears to be stalled"
            }
        }
        
        return alerting_rules
    
    def setup_dashboard_metrics(self):
        """Setup dashboard metrics for monitoring"""
        
        dashboard_metrics = {
            "system_overview": {
                "connector_health": "kafka_connect_connector_status",
                "task_health": "kafka_connect_task_status",
                "total_throughput": "kafka_connect_source_record_poll_rate",
                "average_latency": "kafka_connect_source_record_poll_latency"
            },
            "per_connector": {
                "records_processed": "kafka_connect_source_record_poll_total",
                "records_failed": "kafka_connect_source_record_poll_errors",
                "connector_uptime": "kafka_connect_connector_uptime",
                "last_poll_time": "kafka_connect_source_record_poll_time"
            },
            "target_system_health": {
                "elasticsearch_indexing_rate": "elasticsearch_documents_indexed_rate",
                "redis_operations_rate": "redis_commands_processed_rate",
                "s3_upload_rate": "s3_objects_uploaded_rate"
            }
        }
        
        return dashboard_metrics

📚 Learning Summary

What We Learned in This Part

  1. Change Data Capture Fundamentals
    • CDC concepts and importance
    • Comparison with batch processing
    • ROI evaluation and tool selection
  2. Debezium Architecture and Core Features
    • Debezium platform architecture
    • Database-specific change detection mechanisms
    • Event streaming patterns (Event Sourcing, CQRS, Saga)
  3. Debezium Connector Configuration and Operations
    • MySQL, PostgreSQL, MongoDB connector setup
    • Advanced configuration for performance optimization
    • Connector management and monitoring
  4. Schema Evolution and Schema Registry
    • Schema evolution concepts and importance
    • Schema Registry integration
    • Compatibility strategies and validation
  5. Real-time Data Transformation and Routing
    • Single Message Transform (SMT) utilization
    • Custom transformation logic implementation
    • Topic routing strategies
  6. Practical Project
    • Large-scale e-commerce platform real-time synchronization system
    • MySQL → Elasticsearch/Redis/Data Lake pipeline
    • Monitoring and alerting system

Core Technology Stack

Technology Purpose Importance
Debezium CDC Platform ⭐⭐⭐⭐⭐
Apache Kafka Event Streaming ⭐⭐⭐⭐⭐
Kafka Connect Connector Framework ⭐⭐⭐⭐
Schema Registry Schema Management ⭐⭐⭐⭐
Elasticsearch Search Engine ⭐⭐⭐⭐

Next Part Preview

Part 2: Kafka Connect and Production CDC Operations will cover:

  • Advanced Kafka Connect architecture and scalability
  • Custom connector development
  • Large-scale CDC pipeline operation strategies
  • Performance optimization and bottleneck resolution
  • Data consistency assurance and validation
  • Monitoring and disaster recovery strategies
  • Enterprise-grade CDC operation system construction

Series Progress: Change Data Capture Complete Guide Series


Build modern event-driven architecture with the power of real-time data synchronization! 🚀