Part 1: Apache Iceberg Fundamentals and Table Format - The Beginning of Modern Data Lakehouse

Learn the complete fundamentals of modern data lakehouse from Apache Iceberg’s core concepts to table format, schema evolution, and partitioning strategies.

📋 Table of Contents

  1. Apache Iceberg Introduction
  2. Iceberg Architecture and Core Concepts
  3. Table Format and Metadata Structure
  4. Schema Evolution and Compatibility
  5. Partitioning and Sorting Strategies
  6. Transactions and ACID Guarantees
  7. Practical Project: Building Iceberg Data Lake
  8. Learning Summary

🧊 Apache Iceberg Introduction

What is Iceberg?

Apache Iceberg is an open-source table format for modern data lakehouse. It provides a high-performance table format that can efficiently store and manage large-scale data.

Evolution of Data Lakes

Generation Characteristics Key Technologies Limitations
1st Generation File-based Storage HDFS, S3 • No Schema Evolution
• No ACID Transactions
• Limited Metadata
2nd Generation Table Format Emergence Hive, HBase • Limited Schema Evolution
• Partial ACID Support
• Performance Issues
3rd Generation Modern Table Formats Iceberg, Delta Lake, Hudi • Complete Schema Evolution
• ACID Transactions
• High Performance Queries

Core Values of Iceberg

Value Description Benefits
ACID Transactions Atomicity, Consistency, Isolation, Durability • Data Consistency
• Concurrency Control
• Safe Updates
Schema Evolution Backward Compatibility during Schema Changes • Flexible Data Model
• Gradual Schema Changes
• Version Management
Time Travel Query Data from Past Points • Data Recovery
• Experimentation & Analysis
• Audit Trail
High Performance Optimized Query Performance • Fast Scans
• Efficient Metadata
• Parallel Processing

🏗️ Iceberg Architecture and Core Concepts

Iceberg Architecture Overview

Iceberg manages large-scale data efficiently through a hierarchical metadata structure.

Core Components

Component Role Features
Catalog Table Metadata Management • Track Table Location
• Version Management
• Namespace Management
Metadata Layer Table Schema and Partition Info • JSON/PB Format
• Versioned Snapshots
• Schema Evolution Support
Data Layer Actual Data Files • Parquet/ORC/Avro Format
• Partition-based Storage
• Compression & Encoding

Metadata Hierarchical Structure

class IcebergMetadataStructure:
    def __init__(self):
        self.metadata_layers = {}
    
    def explain_metadata_structure(self):
        """Explain Iceberg metadata structure"""
        
        structure = {
            "catalog": {
                "purpose": "Entry point for table metadata",
                "components": [
                    "Table identifier",
                    "Current metadata file location",
                    "Table properties"
                ],
                "examples": ["HiveCatalog", "HadoopCatalog", "JDBC Catalog"]
            },
            "metadata_file": {
                "purpose": "Define table schema and current state",
                "components": [
                    "Table schema (JSON)",
                    "Current snapshot ID",
                    "Partition spec",
                    "Properties and settings"
                ],
                "format": "JSON or Protocol Buffers"
            },
            "manifest_list": {
                "purpose": "List of manifest files for snapshot",
                "components": [
                    "Manifest file paths",
                    "Partition ranges",
                    "Statistics information",
                    "Schema ID"
                ],
                "benefits": [
                    "Fast snapshot creation",
                    "Efficient partition pruning",
                    "Parallel manifest processing"
                ]
            },
            "manifest_file": {
                "purpose": "Metadata of data files",
                "components": [
                    "Data file paths",
                    "Partition data",
                    "File statistics (row count, size, etc.)",
                    "Column statistics"
                ],
                "benefits": [
                    "File-level pruning",
                    "Column-level statistics",
                    "Efficient scanning"
                ]
            },
            "data_files": {
                "purpose": "Actual data storage",
                "formats": ["Parquet", "ORC", "Avro"],
                "features": [
                    "Column-wise compression",
                    "Indexing",
                    "Embedded statistics"
                ]
            }
        }
        
        return structure
    
    def demonstrate_metadata_evolution(self):
        """Demonstrate metadata evolution process"""
        
        evolution_process = {
            "step_1": {
                "action": "Initial table creation",
                "metadata_created": [
                    "metadata.json (v1)",
                    "manifest-list-1.avro",
                    "manifest-1.avro"
                ],
                "snapshot_id": "snapshot-1"
            },
            "step_2": {
                "action": "Data insertion",
                "metadata_created": [
                    "manifest-list-2.avro",
                    "manifest-2.avro (new files)"
                ],
                "snapshot_id": "snapshot-2",
                "parent_snapshot": "snapshot-1"
            },
            "step_3": {
                "action": "Schema evolution",
                "metadata_created": [
                    "metadata.json (v2) - new schema",
                    "manifest-list-3.avro"
                ],
                "snapshot_id": "snapshot-3",
                "schema_evolution": "column addition"
            },
            "step_4": {
                "action": "Data deletion/update",
                "metadata_created": [
                    "manifest-list-4.avro",
                    "delete-files.avro (deletion markers)"
                ],
                "snapshot_id": "snapshot-4",
                "operation": "copy-on-write"
            }
        }
        
        return evolution_process

Iceberg vs Traditional Table Formats

Feature Iceberg Hive Delta Lake Apache Hudi
ACID Transactions ✅ Full Support ❌ Limited ✅ Full Support ✅ Full Support
Schema Evolution ✅ Full Support ❌ Limited ✅ Full Support ✅ Full Support
Time Travel ✅ Supported ❌ Not Supported ✅ Supported ✅ Supported
Partition Evolution ✅ Supported ❌ Not Supported ❌ Not Supported ❌ Not Supported
Commit Performance 🟢 Fast 🔴 Slow 🟡 Medium 🟡 Medium
Query Performance 🟢 Optimized 🔴 Basic 🟡 Medium 🟡 Medium
Ecosystem Support 🟢 Extensive 🟢 Extensive 🟡 Spark-focused 🟡 Limited

📊 Table Format and Metadata Structure

Detailed Table Format Analysis

Iceberg tables provide efficient data management through a hierarchical metadata structure.

Metadata File Structure

class IcebergTableFormat:
    def __init__(self):
        self.table_structure = {}
    
    def analyze_table_format(self):
        """Detailed table format analysis"""
        
        format_analysis = {
            "metadata_hierarchy": {
                "level_1": {
                    "name": "Catalog",
                    "purpose": "Table location and basic information",
                    "content": {
                        "table_identifier": "database.table_name",
                        "current_metadata_location": "/path/to/metadata.json",
                        "table_type": "ICEBERG",
                        "properties": {
                            "write.format.default": "parquet",
                            "write.metadata.delete-after-commit.enabled": "true"
                        }
                    }
                },
                "level_2": {
                    "name": "Metadata File",
                    "purpose": "Table schema and settings",
                    "content": {
                        "format-version": 2,
                        "table-uuid": "uuid-string",
                        "location": "/table/path",
                        "last-updated-ms": 1234567890000,
                        "last-column-id": 5,
                        "schema": {
                            "type": "struct",
                            "schema-id": 0,
                            "fields": [
                                {
                                    "id": 1,
                                    "name": "id",
                                    "required": True,
                                    "type": "long"
                                },
                                {
                                    "id": 2,
                                    "name": "name",
                                    "required": False,
                                    "type": "string"
                                }
                            ]
                        },
                        "current-schema-id": 0,
                        "schemas": [...],
                        "partition-spec": [...],
                        "default-spec-id": 0,
                        "partition-specs": [...],
                        "last-partition-id": 1000,
                        "default-sort-order-id": 0,
                        "sort-orders": [...],
                        "current-snapshot-id": 123456789,
                        "refs": {
                            "main": 123456789
                        },
                        "snapshots": [...],
                        "snapshot-log": [...],
                        "metadata-log": [...]
                    }
                },
                "level_3": {
                    "name": "Manifest List",
                    "purpose": "List of manifest files for snapshot",
                    "content": {
                        "manifest_path": "/path/to/manifest-list.avro",
                        "manifest_length": 1024,
                        "partition_spec_id": 0,
                        "added_snapshot_id": 123456789,
                        "added_data_files_count": 100,
                        "existing_data_files_count": 0,
                        "deleted_data_files_count": 0,
                        "partitions": [
                            {
                                "contains_null": False,
                                "lower_bound": "2023-01-01",
                                "upper_bound": "2023-01-31"
                            }
                        ],
                        "added_rows_count": 1000000,
                        "existing_rows_count": 0,
                        "deleted_rows_count": 0
                    }
                },
                "level_4": {
                    "name": "Manifest File",
                    "purpose": "Data file metadata",
                    "content": {
                        "manifest_path": "/path/to/manifest.avro",
                        "manifest_length": 2048,
                        "partition_spec_id": 0,
                        "content": 0,  # DATA=0, DELETES=1
                        "sequence_number": 1,
                        "min_sequence_number": 1,
                        "snapshot_id": 123456789,
                        "added_files": [
                            {
                                "content": 0,
                                "file_path": "/data/file1.parquet",
                                "file_format": "PARQUET",
                                "partition": {
                                    "year": 2023,
                                    "month": 1
                                },
                                "record_count": 100000,
                                "file_size_in_bytes": 1024000,
                                "column_sizes": {...},
                                "value_counts": {...},
                                "null_value_counts": {...},
                                "lower_bounds": {...},
                                "upper_bounds": {...}
                            }
                        ]
                    }
                }
            }
        }
        
        return format_analysis
    
    def demonstrate_file_lifecycle(self):
        """Demonstrate file lifecycle"""
        
        lifecycle = {
            "create_table": {
                "step": 1,
                "action": "Table creation",
                "files_created": [
                    "metadata.json",
                    "manifest-list-1.avro (empty list)",
                    "manifest-1.avro (empty manifest)"
                ],
                "snapshot": "snapshot-1 (empty snapshot)"
            },
            "insert_data": {
                "step": 2,
                "action": "Data insertion",
                "files_created": [
                    "data/file-1.parquet",
                    "data/file-2.parquet",
                    "manifest-list-2.avro (including new manifest)",
                    "manifest-2.avro (new files)"
                ],
                "snapshot": "snapshot-2 (with new data)",
                "operation": "append"
            },
            "update_data": {
                "step": 3,
                "action": "Data update",
                "files_created": [
                    "data/file-3.parquet (new version)",
                    "delete/delete-1.parquet (deletion marker)",
                    "manifest-list-3.avro",
                    "manifest-3.avro"
                ],
                "snapshot": "snapshot-3 (updated data)",
                "operation": "copy-on-write"
            },
            "compact_data": {
                "step": 4,
                "action": "Data compaction",
                "files_created": [
                    "data/compacted-file-1.parquet (consolidated file)",
                    "manifest-list-4.avro",
                    "manifest-4.avro"
                ],
                "files_removed": [
                    "data/file-1.parquet",
                    "data/file-2.parquet",
                    "delete/delete-1.parquet"
                ],
                "snapshot": "snapshot-4 (compacted data)",
                "operation": "rewrite"
            }
        }
        
        return lifecycle

Metadata Optimization Strategies

Optimization Area Strategy Implementation Effect
Manifest Size • Manifest Splitting
• Compression Optimization
• Limit rows per file
• gzip/snappy compression
• Query performance improvement
• Metadata size reduction
Scan Optimization • Partition Pruning
• Column Pruning
• Partition range information
• Column statistics
• I/O reduction
• Query speed improvement
Commit Performance • Parallel Manifest Generation
• Asynchronous Processing
• Multi-threaded processing
• Background tasks
• Write performance improvement
• Latency reduction

🔄 Schema Evolution and Compatibility

Schema Evolution Concepts

Iceberg ensures backward compatibility during schema changes, allowing safe processing of both existing and new data.

Schema Evolution Rules

Change Type Compatibility Description Example
Add Column ✅ Backward Compatible New column must be nullable ALTER TABLE ADD COLUMN email STRING
Drop Column ✅ Backward Compatible Column removed from existing data ALTER TABLE DROP COLUMN old_field
Change Column Type 🟡 Conditionally Compatible Only compatible type changes allowed INT → LONG, STRING → BINARY
Change Column Order ✅ Backward Compatible Handled by ID-based processing Column order rearrangement
Change Column Requirement 🟡 Conditionally Compatible nullable → required not allowed Only required → nullable allowed

Schema Evolution Implementation

class SchemaEvolutionManager:
    def __init__(self):
        self.schema_versions = {}
        self.compatibility_rules = {}
    
    def setup_schema_evolution(self):
        """Setup schema evolution"""
        
        evolution_config = {
            "schema_evolution_rules": {
                "add_column": {
                    "compatibility": "backward_compatible",
                    "requirements": [
                        "New column must be nullable",
                        "Default value can be specified",
                        "Column ID is automatically assigned"
                    ],
                    "example": {
                        "old_schema": {
                            "type": "struct",
                            "fields": [
                                {"id": 1, "name": "id", "type": "long", "required": True},
                                {"id": 2, "name": "name", "type": "string", "required": False}
                            ]
                        },
                        "new_schema": {
                            "type": "struct",
                            "fields": [
                                {"id": 1, "name": "id", "type": "long", "required": True},
                                {"id": 2, "name": "name", "type": "string", "required": False},
                                {"id": 3, "name": "email", "type": "string", "required": False}
                            ]
                        },
                        "evolution_type": "add_column"
                    }
                },
                "drop_column": {
                    "compatibility": "backward_compatible",
                    "requirements": [
                        "Column is marked as deleted",
                        "Data is not physically removed",
                        "Old readers can still access data"
                    ],
                    "example": {
                        "old_schema": {
                            "type": "struct",
                            "fields": [
                                {"id": 1, "name": "id", "type": "long", "required": True},
                                {"id": 2, "name": "name", "type": "string", "required": False},
                                {"id": 3, "name": "email", "type": "string", "required": False}
                            ]
                        },
                        "new_schema": {
                            "type": "struct",
                            "fields": [
                                {"id": 1, "name": "id", "type": "long", "required": True},
                                {"id": 3, "name": "email", "type": "string", "required": False}
                            ]
                        },
                        "evolution_type": "drop_column",
                        "deleted_columns": [{"id": 2, "name": "name"}]
                    }
                },
                "change_column_type": {
                    "compatibility": "conditional",
                    "requirements": [
                        "Type change must be compatible",
                        "Only widening conversions",
                        "No data loss allowed"
                    ],
                    "compatible_changes": [
                        "int → long",
                        "float → double",
                        "string → binary",
                        "decimal(precision, scale) → decimal(precision+1, scale)"
                    ],
                    "incompatible_changes": [
                        "long → int",
                        "double → float",
                        "string → int",
                        "binary → string"
                    ]
                }
            }
        }
        
        return evolution_config
    
    def demonstrate_schema_evolution_process(self):
        """Demonstrate schema evolution process"""
        
        evolution_process = {
            "initial_schema": {
                "version": 1,
                "schema": {
                    "type": "struct",
                    "schema-id": 0,
                    "fields": [
                        {
                            "id": 1,
                            "name": "user_id",
                            "required": True,
                            "type": "long"
                        },
                        {
                            "id": 2,
                            "name": "username",
                            "required": True,
                            "type": "string"
                        },
                        {
                            "id": 3,
                            "name": "created_at",
                            "required": True,
                            "type": "timestamp"
                        }
                    ]
                },
                "data_files": ["user_data_v1.parquet"]
            },
            "add_email_column": {
                "version": 2,
                "schema": {
                    "type": "struct",
                    "schema-id": 1,
                    "fields": [
                        {
                            "id": 1,
                            "name": "user_id",
                            "required": True,
                            "type": "long"
                        },
                        {
                            "id": 2,
                            "name": "username",
                            "required": True,
                            "type": "string"
                        },
                        {
                            "id": 3,
                            "name": "created_at",
                            "required": True,
                            "type": "timestamp"
                        },
                        {
                            "id": 4,
                            "name": "email",
                            "required": False,
                            "type": "string"
                        }
                    ]
                },
                "data_files": ["user_data_v1.parquet", "user_data_v2.parquet"],
                "evolution_type": "add_column"
            },
            "change_username_to_binary": {
                "version": 3,
                "schema": {
                    "type": "struct",
                    "schema-id": 2,
                    "fields": [
                        {
                            "id": 1,
                            "name": "user_id",
                            "required": True,
                            "type": "long"
                        },
                        {
                            "id": 2,
                            "name": "username",
                            "required": True,
                            "type": "binary"
                        },
                        {
                            "id": 3,
                            "name": "created_at",
                            "required": True,
                            "type": "timestamp"
                        },
                        {
                            "id": 4,
                            "name": "email",
                            "required": False,
                            "type": "string"
                        }
                    ]
                },
                "data_files": ["user_data_v1.parquet", "user_data_v2.parquet", "user_data_v3.parquet"],
                "evolution_type": "change_column_type"
            },
            "drop_email_column": {
                "version": 4,
                "schema": {
                    "type": "struct",
                    "schema-id": 3,
                    "fields": [
                        {
                            "id": 1,
                            "name": "user_id",
                            "required": True,
                            "type": "long"
                        },
                        {
                            "id": 2,
                            "name": "username",
                            "required": True,
                            "type": "binary"
                        },
                        {
                            "id": 3,
                            "name": "created_at",
                            "required": True,
                            "type": "timestamp"
                        }
                    ]
                },
                "data_files": ["user_data_v1.parquet", "user_data_v2.parquet", "user_data_v3.parquet", "user_data_v4.parquet"],
                "evolution_type": "drop_column",
                "deleted_columns": [{"id": 4, "name": "email"}]
            }
        }
        
        return evolution_process
    
    def validate_schema_compatibility(self, old_schema, new_schema):
        """Validate schema compatibility"""
        
        compatibility_check = {
            "is_compatible": True,
            "issues": [],
            "recommendations": []
        }
        
        old_fields = {field["id"]: field for field in old_schema["fields"]}
        new_fields = {field["id"]: field for field in new_schema["fields"]}
        
        # Check for added fields
        added_fields = set(new_fields.keys()) - set(old_fields.keys())
        for field_id in added_fields:
            field = new_fields[field_id]
            if field.get("required", False):
                compatibility_check["issues"].append(
                    f"Added field '{field['name']}' (id: {field_id}) must be nullable"
                )
                compatibility_check["is_compatible"] = False
        
        # Check for removed fields
        removed_fields = set(old_fields.keys()) - set(new_fields.keys())
        if removed_fields:
            compatibility_check["recommendations"].append(
                "Consider marking fields as deprecated before removing them"
            )
        
        # Check for type changes
        common_fields = set(old_fields.keys()) & set(new_fields.keys())
        for field_id in common_fields:
            old_field = old_fields[field_id]
            new_field = new_fields[field_id]
            
            if old_field["type"] != new_field["type"]:
                if not self._is_type_compatible(old_field["type"], new_field["type"]):
                    compatibility_check["issues"].append(
                        f"Field '{old_field['name']}' type change from {old_field['type']} to {new_field['type']} is not compatible"
                    )
                    compatibility_check["is_compatible"] = False
        
        return compatibility_check
    
    def _is_type_compatible(self, old_type, new_type):
        """Check type compatibility"""
        
        compatible_changes = {
            "int": ["long"],
            "float": ["double"],
            "string": ["binary"],
            "decimal(10,2)": ["decimal(11,2)", "decimal(10,3)"]
        }
        
        return new_type in compatible_changes.get(old_type, [])

Schema Evolution Best Practices

Best Practice Description Implementation
Gradual Evolution Change one at a time • Step-by-step schema changes
• Test at each step
Backward Compatibility Ensure existing data access • Add nullable columns
• Only allow type expansion
Version Management Track schema versions • Schema ID management
• Change history recording
Testing Strategy Validate after evolution • Compatibility testing
• Performance testing

📁 Partitioning and Sorting Strategies

Partitioning Concepts

Iceberg partitioning logically divides data to improve query performance and management efficiency.

Partitioning Strategies

Strategy Description Advantages Disadvantages Use Cases
Identity Partitioning Use column values directly as partitions • Simplicity
• Fast pruning
• Limited partition count
• Difficult schema changes
• Date-based data
• Region-based data
Bucket Partitioning Hash-based partitioning • Even distribution
• Join optimization
• Inefficient range queries
• Fixed partition count
• Large tables
• Join performance critical
Truncate Partitioning String truncation • String range partitioning
• Flexible size
• Uneven distribution
• Uneven partition sizes
• User IDs
• Product codes
Year/Month/Day Time-based hierarchical partitioning • Time range query optimization
• Natural partitioning
• Increasing partition count
• Management complexity
• Time series data
• Log data

Partitioning Implementation

class IcebergPartitioningStrategy:
    def __init__(self):
        self.partition_specs = {}
    
    def design_partitioning_strategy(self, table_requirements):
        """Design partitioning strategy"""
        
        strategy = {
            "time_series_table": {
                "partition_spec": {
                    "spec_id": 0,
                    "fields": [
                        {
                            "source_id": 4,  # created_at column ID
                            "field_id": 1000,
                            "name": "created_date",
                            "transform": "day"
                        },
                        {
                            "source_id": 1,  # user_id column ID
                            "field_id": 1001,
                            "name": "user_bucket",
                            "transform": "bucket[16]"
                        }
                    ]
                },
                "benefits": [
                    "Time range query optimization",
                    "User-based data distribution",
                    "Parallel processing improvement"
                ],
                "use_case": "User activity logs"
            },
            "large_analytics_table": {
                "partition_spec": {
                    "spec_id": 0,
                    "fields": [
                        {
                            "source_id": 2,  # region column ID
                            "field_id": 1000,
                            "name": "region",
                            "transform": "identity"
                        },
                        {
                            "source_id": 3,  # category column ID
                            "field_id": 1001,
                            "name": "category",
                            "transform": "identity"
                        }
                    ]
                },
                "benefits": [
                    "Region-based data separation",
                    "Category-based query optimization",
                    "Data locality guarantee"
                ],
                "use_case": "E-commerce order data"
            },
            "high_frequency_table": {
                "partition_spec": {
                    "spec_id": 0,
                    "fields": [
                        {
                            "source_id": 1,  # id column ID
                            "field_id": 1000,
                            "name": "id_bucket",
                            "transform": "bucket[32]"
                        }
                    ]
                },
                "benefits": [
                    "Even data distribution",
                    "High concurrency support",
                    "Partition size control"
                ],
                "use_case": "Real-time event data"
            }
        }
        
        return strategy
    
    def demonstrate_partition_evolution(self):
        """Demonstrate partition evolution"""
        
        evolution_process = {
            "initial_partition": {
                "spec_id": 0,
                "partition_spec": {
                    "fields": [
                        {
                            "source_id": 4,
                            "field_id": 1000,
                            "name": "year",
                            "transform": "year"
                        }
                    ]
                },
                "data_layout": "/table/data/year=2023/file1.parquet",
                "benefits": ["Year-based query optimization"]
            },
            "add_month_partition": {
                "spec_id": 1,
                "partition_spec": {
                    "fields": [
                        {
                            "source_id": 4,
                            "field_id": 1000,
                            "name": "year",
                            "transform": "year"
                        },
                        {
                            "source_id": 4,
                            "field_id": 1001,
                            "name": "month",
                            "transform": "month"
                        }
                    ]
                },
                "data_layout": "/table/data/year=2023/month=01/file1.parquet",
                "benefits": ["Monthly detailed query optimization"],
                "evolution_type": "add_partition_field"
            },
            "change_to_day_partition": {
                "spec_id": 2,
                "partition_spec": {
                    "fields": [
                        {
                            "source_id": 4,
                            "field_id": 1000,
                            "name": "date",
                            "transform": "day"
                        }
                    ]
                },
                "data_layout": "/table/data/date=2023-01-15/file1.parquet",
                "benefits": ["Daily detailed query optimization"],
                "evolution_type": "replace_partition_field"
            }
        }
        
        return evolution_process

Sorting Strategies

Sorting Strategy Description Advantages Use Cases
Default Sorting Data insertion order • Simplicity
• Fast insertion
• General tables
Column Sorting Sort by specific columns • Range query optimization
• Improved compression
• Time-ordered data
• ID-ordered data
Composite Sorting Multi-column sorting • Complex query optimization
• Advanced pruning
• Multi-dimensional queries
• Analytics tables

⚡ Transactions and ACID Guarantees

ACID Transaction Concepts

Iceberg guarantees ACID (Atomicity, Consistency, Isolation, Durability) properties to provide data consistency and reliability.

Transaction Properties

Property Description Iceberg Implementation Benefits
Atomicity Transaction succeeds all or fails all • Snapshot-based commits
• Atomic metadata updates
• Prevent partial failures
• Ensure data consistency
Consistency Database in valid state after transaction • Schema validation
• Constraint checking
• Prevent invalid data
• Business rule compliance
Isolation Prevent interference between concurrent transactions • Optimistic concurrency control
• Snapshot isolation
• Improve concurrency
• Prevent deadlocks
Durability Committed transactions are permanently preserved • Persistent metadata storage
• Replica management
• Prevent data loss
• Disaster recovery support

Transaction Implementation

class IcebergTransactionManager:
    def __init__(self):
        self.active_transactions = {}
        self.snapshot_manager = SnapshotManager()
    
    def demonstrate_transaction_lifecycle(self):
        """Demonstrate transaction lifecycle"""
        
        transaction_lifecycle = {
            "begin_transaction": {
                "step": 1,
                "action": "Begin transaction",
                "process": [
                    "Generate new snapshot ID",
                    "Set current snapshot as parent",
                    "Create transaction context"
                ],
                "metadata": {
                    "transaction_id": "txn-12345",
                    "parent_snapshot_id": 100,
                    "start_time": "2023-01-01T10:00:00Z",
                    "status": "ACTIVE"
                }
            },
            "modify_data": {
                "step": 2,
                "action": "Modify data",
                "process": [
                    "Create new data files",
                    "Mark files for deletion",
                    "Update manifests"
                ],
                "operations": [
                    "INSERT: 1000 rows → new_file1.parquet",
                    "UPDATE: 500 rows → new_file2.parquet",
                    "DELETE: 200 rows → delete_file1.parquet"
                ],
                "metadata": {
                    "added_files": 2,
                    "deleted_files": 1,
                    "modified_rows": 1500
                }
            },
            "validate_changes": {
                "step": 3,
                "action": "Validate changes",
                "process": [
                    "Schema consistency check",
                    "Partition rule validation",
                    "Constraint verification"
                ],
                "validation_checks": [
                    "Schema compatibility: ✅ PASS",
                    "Partition spec: ✅ PASS",
                    "Data quality: ✅ PASS"
                ]
            },
            "commit_transaction": {
                "step": 4,
                "action": "Commit transaction",
                "process": [
                    "Update metadata file",
                    "Create new snapshot",
                    "Update manifest list"
                ],
                "metadata": {
                    "snapshot_id": 101,
                    "commit_time": "2023-01-01T10:05:00Z",
                    "operation": "append",
                    "summary": {
                        "added-records": 1000,
                        "deleted-records": 200,
                        "total-records": 9800
                    }
                }
            },
            "rollback_transaction": {
                "step": "rollback",
                "action": "Rollback transaction",
                "process": [
                    "Delete temporary files",
                    "Clean up transaction context",
                    "Maintain parent snapshot"
                ],
                "result": "All changes cancelled, original state restored"
            }
        }
        
        return transaction_lifecycle
    
    def demonstrate_concurrent_transactions(self):
        """Demonstrate concurrent transaction processing"""
        
        concurrent_scenario = {
            "initial_state": {
                "snapshot_id": 100,
                "table_state": "stable",
                "pending_transactions": 0
            },
            "transaction_a": {
                "transaction_id": "txn-A",
                "start_time": "10:00:00",
                "operation": "INSERT 1000 rows",
                "parent_snapshot": 100,
                "status": "IN_PROGRESS"
            },
            "transaction_b": {
                "transaction_id": "txn-B", 
                "start_time": "10:01:00",
                "operation": "UPDATE 500 rows",
                "parent_snapshot": 100,
                "status": "IN_PROGRESS"
            },
            "commit_sequence": {
                "txn_a_commit": {
                    "time": "10:02:00",
                    "action": "Transaction A commits",
                    "new_snapshot": 101,
                    "result": "Success - 1000 rows added"
                },
                "txn_b_commit": {
                    "time": "10:03:00",
                    "action": "Transaction B attempts commit",
                    "conflict_check": "Parent snapshot changed (100 → 101)",
                    "resolution": "Rebase and retry",
                    "new_snapshot": 102,
                    "result": "Success - 500 rows updated"
                }
            },
            "final_state": {
                "snapshot_id": 102,
                "table_state": "stable",
                "total_rows": 10500,
                "committed_transactions": 2
            }
        }
        
        return concurrent_scenario

Concurrency Control Mechanisms

Mechanism Description Advantages Disadvantages
Optimistic Concurrency Control Assume low conflict and proceed • High concurrency
• No deadlocks
• Retry needed on conflicts
• Complex conflict resolution
Snapshot Isolation Provide consistent view from transaction start • Improved read performance
• Consistent reads
• Increased memory usage
• Complex snapshot management
Conflict Detection Check and resolve conflicts at commit • Data consistency guarantee
• Automatic conflict resolution
• Retry overhead
• Performance impact

🚀 Practical Project: Building Iceberg Data Lake

Project Overview

Build an Iceberg-based data lakehouse for a large-scale e-commerce platform.

System Architecture

Component Technology Stack Capacity Role
Storage S3, HDFS • 100TB+ data
• 1B+ records
• Permanent data storage
• Version management
Metadata Hive Metastore, AWS Glue • 1000+ tables
• 100+ databases
• Schema management
• Table metadata
Query Engine Spark, Presto/Trino • 100+ concurrent queries
• 1TB+/sec processing
• SQL query execution
• Analytics jobs
Data Ingestion Kafka, Flink • 1M+ events/sec
• Real-time streams
• Data collection
• Real-time processing

Project Implementation

class IcebergDataLakeProject:
    def __init__(self):
        self.project_config = {}
        self.table_manager = IcebergTableManager()
        self.schema_manager = SchemaManager()
    
    def design_data_lake_architecture(self):
        """Design data lake architecture"""
        
        architecture = {
            "data_domains": {
                "user_analytics": {
                    "tables": [
                        "user_profiles",
                        "user_behavior_events", 
                        "user_segments"
                    ],
                    "partition_strategy": "date + user_bucket",
                    "retention_policy": "7_years",
                    "access_patterns": [
                        "Time range-based analysis",
                        "User behavior analysis",
                        "Segment-based aggregation"
                    ]
                },
                "order_analytics": {
                    "tables": [
                        "orders",
                        "order_items",
                        "order_events"
                    ],
                    "partition_strategy": "date + region",
                    "retention_policy": "10_years",
                    "access_patterns": [
                        "Daily sales analysis",
                        "Regional order analysis",
                        "Product performance analysis"
                    ]
                },
                "product_catalog": {
                    "tables": [
                        "products",
                        "categories",
                        "inventory"
                    ],
                    "partition_strategy": "category",
                    "retention_policy": "permanent",
                    "access_patterns": [
                        "Product search",
                        "Category-based analysis",
                        "Inventory management"
                    ]
                }
            },
            "table_specifications": {
                "user_profiles": {
                    "schema": {
                        "user_id": "BIGINT",
                        "username": "STRING",
                        "email": "STRING",
                        "created_at": "TIMESTAMP",
                        "updated_at": "TIMESTAMP",
                        "profile_data": "STRUCT"
                    },
                    "partitioning": [
                        {"field": "created_at", "transform": "day"},
                        {"field": "user_id", "transform": "bucket[16]"}
                    ],
                    "sorting": ["created_at", "user_id"],
                    "properties": {
                        "write.format.default": "parquet",
                        "write.parquet.compression-codec": "snappy"
                    }
                },
                "user_behavior_events": {
                    "schema": {
                        "event_id": "STRING",
                        "user_id": "BIGINT",
                        "event_type": "STRING",
                        "event_data": "STRUCT",
                        "timestamp": "TIMESTAMP",
                        "session_id": "STRING"
                    },
                    "partitioning": [
                        {"field": "timestamp", "transform": "hour"},
                        {"field": "event_type", "transform": "identity"}
                    ],
                    "sorting": ["timestamp", "user_id"],
                    "properties": {
                        "write.format.default": "parquet",
                        "write.parquet.compression-codec": "gzip"
                    }
                }
            }
        }
        
        return architecture
    
    def implement_data_pipeline(self):
        """Implement data pipeline"""
        
        pipeline = {
            "real_time_ingestion": {
                "source": "Kafka topics",
                "processing": "Apache Flink",
                "destination": "Iceberg tables",
                "flow": [
                    "Kafka → Flink → Iceberg (user_events)",
                    "Kafka → Flink → Iceberg (order_events)",
                    "Kafka → Flink → Iceberg (product_events)"
                ],
                "latency_target": "< 5 minutes"
            },
            "batch_processing": {
                "source": "External systems",
                "processing": "Apache Spark",
                "destination": "Iceberg tables",
                "jobs": [
                    "Daily user profile updates",
                    "Weekly order aggregations",
                    "Monthly product analytics"
                ],
                "schedule": "Daily at 2 AM"
            },
            "data_quality": {
                "validation_rules": [
                    "Schema validation",
                    "Data completeness checks",
                    "Referential integrity",
                    "Business rule validation"
                ],
                "monitoring": [
                    "Data freshness metrics",
                    "Quality score tracking",
                    "Anomaly detection"
                ]
            }
        }
        
        return pipeline
    
    def setup_operational_procedures(self):
        """Setup operational procedures"""
        
        procedures = {
            "schema_evolution": {
                "process": [
                    "1. Review schema change request",
                    "2. Validate compatibility",
                    "3. Test in staging environment",
                    "4. Apply to production",
                    "5. Monitor and validate"
                ],
                "approval_required": "Data architect approval",
                "rollback_plan": "Restore to previous schema"
            },
            "data_retention": {
                "policies": {
                    "user_events": "7 years retention then delete",
                    "order_data": "10 years retention then archive",
                    "product_catalog": "Permanent retention"
                },
                "automation": "Scheduled cleanup jobs",
                "compliance": "GDPR, CCPA compliance"
            },
            "performance_optimization": {
                "compaction": {
                    "frequency": "Weekly",
                    "criteria": "File count > 100 or size > 1GB",
                    "strategy": "Automatic compaction"
                },
                "partition_pruning": {
                    "monitoring": "Query execution plan analysis",
                    "optimization": "Partition strategy adjustment"
                }
            }
        }
        
        return procedures

📚 Learning Summary

What We Learned in This Part

  1. Apache Iceberg Introduction
    • Iceberg’s core concepts and values
    • Evolution of data lakes
    • Comparison with existing table formats
  2. Iceberg Architecture and Core Concepts
    • Hierarchical metadata structure
    • Core components and roles
    • Metadata evolution process
  3. Table Format and Metadata Structure
    • 4-level metadata hierarchy
    • File lifecycle management
    • Metadata optimization strategies
  4. Schema Evolution and Compatibility
    • Schema evolution rules and constraints
    • Compatibility validation methods
    • Evolution process demonstration
  5. Partitioning and Sorting Strategies
    • Various partitioning strategies
    • Partition evolution features
    • Sorting strategies and optimization
  6. Transactions and ACID Guarantees
    • ACID property implementation
    • Transaction lifecycle
    • Concurrency control mechanisms
  7. Practical Project
    • Large-scale e-commerce data lake design
    • Data pipeline implementation
    • Operational procedure setup

Core Technology Stack

Technology Role Importance Learning Points
Apache Iceberg Table Format ⭐⭐⭐⭐⭐ Metadata structure, ACID guarantees
Partitioning Data Division ⭐⭐⭐⭐ Performance optimization, management efficiency
Schema Evolution Flexible Data Model ⭐⭐⭐⭐⭐ Compatibility, version management
Transactions Data Consistency ⭐⭐⭐⭐⭐ ACID properties, concurrency control
Metadata Table Management ⭐⭐⭐⭐ Hierarchical structure, optimization

Next Part Preview

Part 2: Apache Iceberg Advanced Features and Performance Optimization will cover:

  • Advanced partitioning strategies (Evolution, Hidden Partitioning)
  • Compaction and cleanup operations
  • Query performance optimization
  • Metadata management and version control

Series Progress: Apache Iceberg Complete Guide Series


Master Apache Iceberg, the core of modern data lakehouse! 🧊