Part 3: Apache Iceberg and Big Data Ecosystem Integration - Enterprise Data Platform
Part 3: Apache Iceberg and Big Data Ecosystem Integration - Enterprise Data Platform
Complete guide to Apache Iceberg integration with Spark, Flink, Presto/Trino, comparison with Delta Lake and Hudi, cloud storage optimization, and building large-scale data lakehouse through practical projects.
📋 Table of Contents
- Apache Spark and Iceberg Integration
- Apache Flink and Iceberg Integration
- Presto/Trino and Iceberg Integration
- Table Format Comparison Analysis
- Cloud Storage Optimization
- Practical Project: Large-scale Data Lakehouse Construction
- Learning Summary
🔥 Apache Spark and Iceberg Integration
Spark-Iceberg Integration Overview
Apache Spark is one of the most powerful partners of Iceberg, providing a perfect combination for large-scale data processing and analytics.
Spark-Iceberg Integration Strategy
Integration Area | Strategy | Implementation Method | Benefits |
---|---|---|---|
Batch Processing | • Spark SQL + Iceberg • DataFrame API Utilization • Partition Optimization |
• Iceberg Spark Connector • Automatic Partition Pruning • Schema Evolution Support |
• Large-scale Data Processing • Complex Analytical Queries • Scalability |
Streaming Processing | • Structured Streaming • Micro-batch Processing • Real-time Updates |
• Delta Lake-style Processing • ACID Transactions • Schema Evolution |
• Real-time Data Processing • Consistency Guarantee • Fault Recovery |
ML Pipeline | • MLlib Integration • Feature Store • Model Version Management |
• Iceberg-based Feature Storage • Experiment Tracking • Model Serving |
• ML Workflow Integration • Experiment Management • Production Deployment |
Spark-Iceberg Integration Implementation
class SparkIcebergIntegration:
def __init__(self):
self.spark_session = None
self.iceberg_catalog = None
def setup_spark_iceberg_environment(self):
"""Spark-Iceberg Environment Setup"""
# Spark Configuration
spark_config = {
"spark.sql.extensions": "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
"spark.sql.catalog.spark_catalog": "org.apache.iceberg.spark.SparkSessionCatalog",
"spark.sql.catalog.spark_catalog.type": "hadoop",
"spark.sql.catalog.spark_catalog.warehouse": "/warehouse",
"spark.sql.defaultCatalog": "spark_catalog"
}
# Iceberg Configuration
iceberg_config = {
"write.target-file-size-bytes": "134217728", # 128MB
"write.parquet.compression-codec": "zstd",
"write.metadata.delete-after-commit.enabled": "true",
"write.data.delete-mode": "copy-on-write"
}
return spark_config, iceberg_config
def demonstrate_spark_iceberg_operations(self):
"""Spark-Iceberg Operations Demonstration"""
# Table Creation
create_table_sql = """
CREATE TABLE IF NOT EXISTS spark_catalog.default.user_events (
user_id BIGINT,
event_type STRING,
event_data STRUCT<page_url: STRING, session_id: STRING>,
timestamp TIMESTAMP
) USING iceberg
PARTITIONED BY (days(timestamp))
TBLPROPERTIES (
'write.target-file-size-bytes' = '134217728',
'write.parquet.compression-codec' = 'zstd'
)
"""
# Data Insertion
insert_data_sql = """
INSERT INTO spark_catalog.default.user_events
SELECT
user_id,
event_type,
struct(page_url, session_id) as event_data,
timestamp
FROM source_table
WHERE timestamp >= '2023-01-01'
"""
# Schema Evolution
evolve_schema_sql = """
ALTER TABLE spark_catalog.default.user_events
ADD COLUMN device_type STRING
"""
# Partition Evolution
evolve_partition_sql = """
ALTER TABLE spark_catalog.default.user_events
ADD PARTITION FIELD hours(timestamp)
"""
return {
"create_table": create_table_sql,
"insert_data": insert_data_sql,
"evolve_schema": evolve_schema_sql,
"evolve_partition": evolve_partition_sql
}
Spark Structured Streaming and Iceberg
Streaming Processing Strategy
Processing Mode | Description | Implementation Method | Use Cases |
---|---|---|---|
Append Mode | Add new data only | • INSERT INTO • Micro-batch |
• Log Data • Event Streams |
Update Mode | Update existing data | • MERGE INTO • Upsert Operations |
• User Profiles • Order Status |
Complete Mode | Rewrite entire table | • TRUNCATE + INSERT • Full Scan |
• Aggregation Tables • Summary Data |
Streaming Processing Implementation
class SparkStreamingIceberg:
def __init__(self):
self.streaming_query = None
def setup_streaming_processing(self):
"""Streaming Processing Setup"""
# Kafka Source Configuration
kafka_source_config = {
"kafka.bootstrap.servers": "localhost:9092",
"subscribe": "user_events",
"startingOffsets": "latest",
"failOnDataLoss": "false"
}
# Iceberg Sink Configuration
iceberg_sink_config = {
"checkpointLocation": "/checkpoint/streaming",
"outputMode": "append",
"trigger": "processingTime=30 seconds"
}
return kafka_source_config, iceberg_sink_config
def implement_streaming_pipeline(self):
"""Streaming Pipeline Implementation"""
# Streaming Query
streaming_query = """
(spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "user_events")
.load()
.select(
from_json(col("value").cast("string"), schema).alias("data")
)
.select(
col("data.user_id").cast("long").alias("user_id"),
col("data.event_type").alias("event_type"),
struct(
col("data.page_url").alias("page_url"),
col("data.session_id").alias("session_id")
).alias("event_data"),
col("data.timestamp").cast("timestamp").alias("timestamp")
)
.writeStream
.format("iceberg")
.option("checkpointLocation", "/checkpoint/streaming")
.trigger(processingTime="30 seconds")
.toTable("spark_catalog.default.user_events")
.start()
)
"""
return streaming_query
⚡ Apache Flink and Iceberg Integration
Flink-Iceberg Integration Overview
Apache Flink is specialized for real-time streaming processing and can implement real-time data lakehouse through integration with Iceberg.
Flink-Iceberg Integration Strategy
Integration Area | Strategy | Implementation Method | Benefits |
---|---|---|---|
Streaming Processing | • DataStream API • Table API • SQL API |
• Flink Iceberg Connector • Real-time Snapshots • Exactly-once Processing |
• Low-latency Processing • High Throughput • Fault Recovery |
Batch Processing | • DataSet API • Batch Snapshots • Historical Data Processing |
• Iceberg Table Reading • Partition Scanning • Schema Evolution |
• Large-scale Batch Processing • Historical Analysis • Data Migration |
State Management | • Flink State Backend • Iceberg Metadata • Checkpoint Integration |
• State Persistence • Metadata Consistency • Recovery Optimization |
• State Recovery • Consistency Guarantee • Performance Optimization |
Flink-Iceberg Integration Implementation
class FlinkIcebergIntegration:
def __init__(self):
self.flink_env = None
self.table_env = None
def setup_flink_iceberg_environment(self):
"""Flink-Iceberg Environment Setup"""
# Flink Configuration
flink_config = {
"execution.runtime-mode": "streaming",
"execution.checkpointing.interval": "30s",
"execution.checkpointing.externalized-checkpoint-retention": "retain-on-cancellation",
"state.backend": "rocksdb",
"state.checkpoints.dir": "file:///checkpoints"
}
# Iceberg Configuration
iceberg_config = {
"write.target-file-size-bytes": "134217728",
"write.parquet.compression-codec": "zstd",
"write.metadata.delete-after-commit.enabled": "true"
}
return flink_config, iceberg_config
def implement_flink_streaming_pipeline(self):
"""Flink Streaming Pipeline Implementation"""
# Streaming Processing using Table API
streaming_pipeline = """
# Create Kafka Source Table
CREATE TABLE kafka_source (
user_id BIGINT,
event_type STRING,
page_url STRING,
session_id STRING,
timestamp TIMESTAMP(3),
WATERMARK FOR timestamp AS timestamp - INTERVAL '5' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'user_events',
'properties.bootstrap.servers' = 'localhost:9092',
'format' = 'json'
)
# Create Iceberg Sink Table
CREATE TABLE iceberg_sink (
user_id BIGINT,
event_type STRING,
event_data STRUCT<page_url STRING, session_id STRING>,
timestamp TIMESTAMP
) PARTITIONED BY (days(timestamp))
WITH (
'connector' = 'iceberg',
'catalog-name' = 'hadoop_catalog',
'catalog-type' = 'hadoop',
'warehouse' = '/warehouse',
'database-name' = 'default',
'table-name' = 'user_events'
)
# Execute Streaming Query
INSERT INTO iceberg_sink
SELECT
user_id,
event_type,
STRUCT(page_url, session_id) as event_data,
timestamp
FROM kafka_source
WHERE event_type IN ('page_view', 'click', 'purchase')
"""
return streaming_pipeline
def implement_flink_batch_processing(self):
"""Flink Batch Processing Implementation"""
# Batch Processing Pipeline
batch_pipeline = """
# Historical Data Processing
CREATE TABLE historical_data (
user_id BIGINT,
event_type STRING,
event_count BIGINT,
processing_date DATE
) PARTITIONED BY (processing_date)
WITH (
'connector' = 'iceberg',
'catalog-name' = 'hadoop_catalog',
'catalog-type' = 'hadoop',
'warehouse' = '/warehouse',
'database-name' = 'default',
'table-name' = 'daily_event_summary'
)
# Daily Event Aggregation
INSERT INTO historical_data
SELECT
user_id,
event_type,
COUNT(*) as event_count,
DATE(timestamp) as processing_date
FROM iceberg_sink
WHERE DATE(timestamp) = '2023-01-01'
GROUP BY user_id, event_type, DATE(timestamp)
"""
return batch_pipeline
🚀 Presto/Trino and Iceberg Integration
Presto/Trino-Iceberg Integration Overview
Presto and Trino are query engines optimized for interactive analytics, providing fast ad-hoc analysis through integration with Iceberg.
Presto/Trino-Iceberg Integration Strategy
Integration Area | Strategy | Implementation Method | Benefits |
---|---|---|---|
Interactive Queries | • SQL Interface • Partition Pruning • Column Pruning |
• Iceberg Connector • Metadata Caching • Query Optimization |
• Fast Response Time • Complex Analytics • User-friendly |
Distributed Queries | • MPP Architecture • Parallel Processing • Resource Management |
• Cluster Scaling • Query Scheduling • Memory Management |
• High Throughput • Scalability • Resource Efficiency |
Metadata Management | • Unified Catalog • Schema Inference • Statistics Information |
• Hive Metastore Integration • AWS Glue Support • Automatic Schema Detection |
• Unified Management • Automation • Compatibility |
Presto/Trino-Iceberg Integration Implementation
class PrestoTrinoIcebergIntegration:
def __init__(self):
self.catalog_config = {}
self.query_optimizer = None
def setup_presto_trino_catalog(self):
"""Presto/Trino Catalog Setup"""
# Iceberg Catalog Configuration
catalog_config = {
"connector.name": "iceberg",
"hive.metastore.uri": "thrift://localhost:9083",
"iceberg.catalog.type": "hive_metastore",
"iceberg.catalog.warehouse": "/warehouse",
"iceberg.file-format": "PARQUET",
"iceberg.compression-codec": "ZSTD"
}
# Query Optimization Configuration
optimization_config = {
"optimizer.use-mark-distinct": "true",
"optimizer.optimize-metadata-queries": "true",
"optimizer.partition-pruning": "true",
"optimizer.column-pruning": "true"
}
return catalog_config, optimization_config
def demonstrate_analytical_queries(self):
"""Analytical Queries Demonstration"""
# Complex Analytical Queries
analytical_queries = {
"user_behavior_analysis": """
SELECT
user_id,
COUNT(*) as total_events,
COUNT(DISTINCT event_type) as unique_event_types,
COUNT(DISTINCT DATE(timestamp)) as active_days,
MAX(timestamp) as last_activity,
AVG(CASE WHEN event_type = 'purchase' THEN 1 ELSE 0 END) as purchase_rate
FROM iceberg.default.user_events
WHERE timestamp >= CURRENT_DATE - INTERVAL '30' DAY
GROUP BY user_id
HAVING COUNT(*) >= 10
ORDER BY total_events DESC
LIMIT 100
""",
"real_time_metrics": """
WITH hourly_metrics AS (
SELECT
DATE_TRUNC('hour', timestamp) as hour,
event_type,
COUNT(*) as event_count,
COUNT(DISTINCT user_id) as unique_users
FROM iceberg.default.user_events
WHERE timestamp >= CURRENT_TIMESTAMP - INTERVAL '24' HOUR
GROUP BY DATE_TRUNC('hour', timestamp), event_type
)
SELECT
hour,
SUM(event_count) as total_events,
SUM(unique_users) as total_unique_users,
COUNT(DISTINCT event_type) as event_types
FROM hourly_metrics
GROUP BY hour
ORDER BY hour DESC
""",
"funnel_analysis": """
WITH user_journey AS (
SELECT
user_id,
session_id,
timestamp,
event_type,
ROW_NUMBER() OVER (
PARTITION BY user_id, session_id
ORDER BY timestamp
) as step_number
FROM iceberg.default.user_events
WHERE timestamp >= CURRENT_DATE - INTERVAL '7' DAY
),
funnel_steps AS (
SELECT
step_number,
event_type,
COUNT(DISTINCT CONCAT(user_id, '-', session_id)) as sessions
FROM user_journey
WHERE step_number <= 5
GROUP BY step_number, event_type
)
SELECT
step_number,
event_type,
sessions,
LAG(sessions) OVER (ORDER BY step_number) as previous_step_sessions,
ROUND(sessions * 100.0 / LAG(sessions) OVER (ORDER BY step_number), 2) as conversion_rate
FROM funnel_steps
ORDER BY step_number, event_type
"""
}
return analytical_queries
def implement_performance_optimization(self):
"""Performance Optimization Implementation"""
# Query Optimization Strategies
optimization_strategies = {
"partition_pruning": {
"description": "I/O optimization through partition pruning",
"implementation": "Add partition column conditions in WHERE clause",
"benefit": "Reduce number of partitions to scan"
},
"column_pruning": {
"description": "I/O optimization by selecting only necessary columns",
"implementation": "Specify only required columns in SELECT clause",
"benefit": "Reduce network and memory usage"
},
"predicate_pushdown": {
"description": "Push filter conditions to storage level",
"implementation": "Optimize WHERE clause conditions",
"benefit": "Reduce I/O through storage-level filtering"
},
"statistics_utilization": {
"description": "Utilize table statistics information",
"implementation": "Update statistics with ANALYZE TABLE command",
"benefit": "Query planner optimization"
}
}
return optimization_strategies
🔄 Table Format Comparison Analysis
Major Table Format Comparison
Characteristic | Apache Iceberg | Delta Lake | Apache Hudi |
---|---|---|---|
Developer | Netflix → Apache | Databricks | Uber → Apache |
Primary Language | Java, Python, Scala | Scala, Python, Java | Java, Scala |
Schema Evolution | ✅ Full Support | ✅ Full Support | ✅ Full Support |
Partition Evolution | ✅ Full Support | ❌ Not Supported | ✅ Partial Support |
ACID Transactions | ✅ Full Support | ✅ Full Support | ✅ Full Support |
Time Travel | ✅ Supported | ✅ Supported | ✅ Supported |
Cloud Support | ✅ Excellent | ✅ Excellent | 🟡 Good |
Performance | 🟢 Optimized | 🟢 Optimized | 🟡 Good |
Ecosystem | 🟢 Extensive | 🟢 Spark-centric | 🟡 Limited |
Detailed Feature Comparison
Schema Management
Feature | Iceberg | Delta Lake | Hudi |
---|---|---|---|
Schema Addition | ✅ Backward Compatible | ✅ Backward Compatible | ✅ Backward Compatible |
Schema Deletion | ✅ Backward Compatible | ✅ Backward Compatible | ✅ Backward Compatible |
Type Change | ✅ Conditionally Compatible | ✅ Conditionally Compatible | ✅ Conditionally Compatible |
Schema Registry | ✅ Supported | ✅ Supported | ❌ Not Supported |
Partitioning
Feature | Iceberg | Delta Lake | Hudi |
---|---|---|---|
Partition Addition | ✅ Runtime | ❌ Requires Reconfiguration | ✅ Runtime |
Partition Deletion | ✅ Runtime | ❌ Requires Reconfiguration | ✅ Runtime |
Partition Transformation | ✅ Runtime | ❌ Requires Reconfiguration | ✅ Runtime |
Hidden Partitioning | ✅ Supported | ❌ Not Supported | ❌ Not Supported |
Performance Characteristics
Characteristic | Iceberg | Delta Lake | Hudi |
---|---|---|---|
Read Performance | 🟢 Optimized | 🟢 Optimized | 🟡 Good |
Write Performance | 🟢 Optimized | 🟢 Optimized | 🟡 Good |
Commit Performance | 🟢 Fast | 🟡 Good | 🟡 Good |
Metadata Size | 🟢 Small | 🟡 Good | 🔴 Large |
Selection Guide
Iceberg Selection Scenarios
Scenario | Reason | Implementation Method |
---|---|---|
Multiple Query Engines | • Spark, Flink, Presto/Trino Support • Vendor Neutrality |
• Unified Catalog Construction • Standard SQL Interface |
Partition Evolution | • Runtime Partition Changes • Hidden Partitioning |
• Gradual Partition Strategy • Automatic Optimization |
Cloud Native | • S3, ADLS, GCS Optimization • Object Storage Friendly |
• Cloud Storage Integration • Cost Optimization |
Delta Lake Selection Scenarios
Scenario | Reason | Implementation Method |
---|---|---|
Spark-centric | • Spark Ecosystem Integration • Databricks Support |
• Spark-based Pipelines • Databricks Platform |
ML/AI Workloads | • MLlib Integration • Feature Store |
• ML Pipeline Construction • Experiment Management |
Existing Spark Users | • Minimal Learning Curve • Code Reuse |
• Gradual Migration • Compatibility Maintenance |
Hudi Selection Scenarios
Scenario | Reason | Implementation Method |
---|---|---|
Real-time Processing | • Streaming Optimization • Low-latency Updates |
• Kafka Integration • Real-time Pipelines |
CDC (Change Data Capture) | • Database Change Detection • Real-time Synchronization |
• Debezium Integration • CDC Pipelines |
Upsert-centric | • Frequent Updates • Deduplication |
• Upsert Strategy • Data Quality Management |
☁️ Cloud Storage Optimization
Cloud Storage Comparison
Storage | Iceberg Support | Optimization Features | Cost Model | Performance |
---|---|---|---|---|
Amazon S3 | ✅ Full Support | • Intelligent Tiering • S3 Select • Transfer Acceleration |
• Storage Class-based Pricing • Request-based Pricing |
🟢 Excellent |
Azure Data Lake Storage | ✅ Full Support | • Hierarchical Namespace • Blob Storage Integration • Azure Analytics |
• Hot/Cool/Archive • Access Frequency-based |
🟢 Excellent |
Google Cloud Storage | ✅ Full Support | • Lifecycle Management • Nearline/Coldline • Transfer Service |
• Storage Class-based Pricing • Network Pricing |
🟢 Excellent |
Cloud-specific Optimization Strategies
Amazon S3 Optimization
Optimization Area | Strategy | Implementation Method | Effect |
---|---|---|---|
Storage Classes | • Intelligent Tiering • Automatic Lifecycle |
• S3 Lifecycle Policies • Access Pattern Analysis |
• 40-60% Cost Savings • Automatic Optimization |
Transfer Optimization | • Transfer Acceleration • Multipart Upload |
• CloudFront Integration • Parallel Upload |
• 50-500% Speed Improvement • Stability Enhancement |
Request Optimization | • S3 Select • Glacier Select |
• Column-based Queries • Direct Compressed Data Queries |
• 80% Network Reduction • Query Speed Improvement |
Azure Data Lake Storage Optimization
Optimization Area | Strategy | Implementation Method | Effect |
---|---|---|---|
Hierarchical Namespace | • Directory-based Policies • Metadata Optimization |
• ACL-based Access Control • Per-directory Policies |
• Enhanced Security • Management Efficiency |
Storage Tiers | • Hot/Cool/Archive • Automatic Tier Movement |
• Lifecycle Policies • Access Pattern-based Movement |
• 30-70% Cost Savings • Automatic Management |
Analytics Integration | • Azure Synapse • Azure Databricks |
• Native Integration • Optimized Connectors |
• Performance Enhancement • Unified Management |
Google Cloud Storage Optimization
Optimization Area | Strategy | Implementation Method | Effect |
---|---|---|---|
Lifecycle Management | • Automatic Class Changes • Deletion Policies |
• Lifecycle Rules • Condition-based Policies |
• 40-80% Cost Savings • Automatic Management |
Transfer Optimization | • Transfer Service • Parallel Processing |
• Large Data Transfer • Network Optimization |
• Transfer Speed Improvement • Stability Enhancement |
Security Optimization | • IAM Integration • Encryption |
• Fine-grained Permission Management • Customer-managed Keys |
• Enhanced Security • Compliance |
Cloud Storage Optimization Implementation
class CloudStorageOptimizer:
def __init__(self):
self.storage_configs = {}
self.optimization_rules = {}
def setup_s3_optimization(self):
"""S3 Optimization Setup"""
# Storage Class Optimization
storage_class_config = {
"standard": {
"use_case": "Frequently accessed data",
"retention": "30_days",
"cost_per_gb": 0.023
},
"standard_ia": {
"use_case": "Occasionally accessed data",
"retention": "90_days",
"cost_per_gb": 0.0125
},
"glacier": {
"use_case": "Long-term archived data",
"retention": "365_days",
"cost_per_gb": 0.004
},
"intelligent_tiering": {
"use_case": "Data with irregular access patterns",
"automation": True,
"cost_per_gb": "variable"
}
}
# Lifecycle Policy
lifecycle_policy = {
"rules": [
{
"id": "IcebergDataLifecycle",
"status": "Enabled",
"transitions": [
{
"days": 30,
"storage_class": "STANDARD_IA"
},
{
"days": 90,
"storage_class": "GLACIER"
}
],
"expiration": {
"days": 2555 # 7 years
}
}
]
}
return storage_class_config, lifecycle_policy
def setup_azure_optimization(self):
"""Azure Storage Optimization Setup"""
# Storage Tier Configuration
storage_tiers = {
"hot": {
"use_case": "Frequently accessed data",
"retention": "30_days",
"cost_per_gb": 0.0184
},
"cool": {
"use_case": "Occasionally accessed data",
"retention": "90_days",
"cost_per_gb": 0.01
},
"archive": {
"use_case": "Long-term archived data",
"retention": "365_days",
"cost_per_gb": 0.00099
}
}
# Lifecycle Management Policy
lifecycle_management = {
"rules": [
{
"name": "IcebergDataLifecycle",
"enabled": True,
"type": "Lifecycle",
"definition": {
"filters": {
"blob_types": ["blockBlob"],
"prefix_match": ["iceberg/"]
},
"actions": {
"base_blob": {
"tier_to_cool": {
"days_after_modification_greater_than": 30
},
"tier_to_archive": {
"days_after_modification_greater_than": 90
},
"delete": {
"days_after_modification_greater_than": 2555
}
}
}
}
}
]
}
return storage_tiers, lifecycle_management
def setup_gcs_optimization(self):
"""Google Cloud Storage Optimization Setup"""
# Storage Class Configuration
storage_classes = {
"standard": {
"use_case": "Frequently accessed data",
"retention": "30_days",
"cost_per_gb": 0.02
},
"nearline": {
"use_case": "Data accessed monthly",
"retention": "30_days",
"cost_per_gb": 0.01
},
"coldline": {
"use_case": "Data accessed quarterly",
"retention": "90_days",
"cost_per_gb": 0.007
},
"archive": {
"use_case": "Data accessed annually",
"retention": "365_days",
"cost_per_gb": 0.0012
}
}
# Lifecycle Rules
lifecycle_rules = {
"rules": [
{
"action": {
"type": "SetStorageClass",
"storageClass": "nearline"
},
"condition": {
"age": 30
}
},
{
"action": {
"type": "SetStorageClass",
"storageClass": "coldline"
},
"condition": {
"age": 90
}
},
{
"action": {
"type": "SetStorageClass",
"storageClass": "archive"
},
"condition": {
"age": 365
}
},
{
"action": {
"type": "Delete"
},
"condition": {
"age": 2555
}
}
]
}
return storage_classes, lifecycle_rules
🏗️ Practical Project: Large-scale Data Lakehouse Construction
Project Overview
Building an Iceberg-based data lakehouse for a large-scale e-commerce platform, integrating various query engines and cloud storage.
System Architecture
Overall Architecture
Layer | Components | Technology Stack | Role |
---|---|---|---|
Data Ingestion | • Real-time Streams • Batch Files • API Data |
• Kafka, Flink • Spark, Airflow • REST API |
• Data Collection • Real-time Processing • Batch Processing |
Data Storage | • Raw Data • Refined Data • Aggregated Data |
• Iceberg Tables • S3/ADLS/GCS • Partitioning |
• Data Storage • Version Management • Schema Evolution |
Data Processing | • ETL/ELT • Real-time Analytics • ML Pipeline |
• Spark, Flink • Presto/Trino • MLlib, TensorFlow |
• Data Transformation • Analytical Processing • ML Modeling |
Data Serving | • BI Tools • API Services • Real-time Dashboards |
• Tableau, PowerBI • REST API • Grafana, Kibana |
• Data Visualization • API Provision • Monitoring |
Data Domain Design
Data Domain | Table Count | Data Volume | Partition Strategy | Retention Policy |
---|---|---|---|---|
User Analytics | 25 tables | 500TB | Date + User Bucket | 7 years |
Order Analytics | 15 tables | 300TB | Date + Region | 10 years |
Product Catalog | 10 tables | 50TB | Category | Permanent |
Marketing Analytics | 20 tables | 200TB | Campaign + Date | 5 years |
Financial Analytics | 12 tables | 100TB | Monthly | 15 years |
Project Implementation
class EnterpriseDataLakehouse:
def __init__(self):
self.catalog_manager = CatalogManager()
self.schema_registry = SchemaRegistry()
self.data_governance = DataGovernance()
def design_data_architecture(self):
"""Data Architecture Design"""
architecture = {
"data_layers": {
"bronze_layer": {
"purpose": "Raw data storage",
"tables": [
"user_events_raw",
"order_events_raw",
"product_updates_raw",
"marketing_events_raw"
],
"partitioning": "hourly",
"retention": "30_days",
"format": "parquet",
"compression": "snappy"
},
"silver_layer": {
"purpose": "Refined data storage",
"tables": [
"user_events_cleaned",
"order_events_cleaned",
"product_catalog",
"marketing_campaigns"
],
"partitioning": "daily",
"retention": "7_years",
"format": "parquet",
"compression": "zstd"
},
"gold_layer": {
"purpose": "Business analytics aggregated data",
"tables": [
"user_behavior_summary",
"daily_sales_summary",
"product_performance",
"marketing_effectiveness"
],
"partitioning": "monthly",
"retention": "10_years",
"format": "parquet",
"compression": "zstd"
}
},
"integration_patterns": {
"real_time_ingestion": {
"source": "Kafka topics",
"processing": "Apache Flink",
"destination": "Bronze layer",
"latency": "< 5 minutes"
},
"batch_processing": {
"source": "External systems",
"processing": "Apache Spark",
"destination": "Silver/Gold layers",
"frequency": "daily"
},
"streaming_analytics": {
"source": "Bronze layer",
"processing": "Apache Flink + Spark",
"destination": "Gold layer",
"latency": "< 30 minutes"
}
}
}
return architecture
def implement_multi_engine_integration(self):
"""Multi-engine Integration Implementation"""
integration_config = {
"spark_integration": {
"use_cases": [
"ETL jobs",
"Batch analytics",
"ML pipelines"
],
"tables": [
"user_events_processed",
"order_analytics",
"ml_features"
],
"optimization": {
"target_file_size": "128MB",
"compression": "zstd",
"partitioning": "adaptive"
}
},
"flink_integration": {
"use_cases": [
"Real-time streaming",
"Event processing",
"Real-time aggregation"
],
"tables": [
"real_time_metrics",
"streaming_events",
"live_dashboards"
],
"optimization": {
"checkpoint_interval": "30s",
"parallelism": "auto",
"state_backend": "rocksdb"
}
},
"presto_trino_integration": {
"use_cases": [
"Interactive analytics",
"Ad-hoc queries",
"BI tool integration"
],
"tables": [
"analytical_views",
"summary_tables",
"reporting_data"
],
"optimization": {
"metadata_caching": True,
"query_optimization": True,
"parallel_execution": True
}
}
}
return integration_config
def setup_cloud_optimization(self):
"""Cloud Optimization Setup"""
cloud_optimization = {
"storage_optimization": {
"s3_optimization": {
"storage_classes": {
"standard": "Frequently accessed data (30 days)",
"standard_ia": "Occasionally accessed data (90 days)",
"glacier": "Long-term archived data (365 days)"
},
"lifecycle_policies": {
"automated_tiering": True,
"cost_optimization": True,
"retention_management": True
}
},
"performance_optimization": {
"intelligent_tiering": True,
"transfer_acceleration": True,
"s3_select": True
}
},
"compute_optimization": {
"auto_scaling": {
"spark_cluster": "CPU-based scaling",
"flink_cluster": "Throughput-based scaling",
"presto_cluster": "Query queue-based scaling"
},
"resource_optimization": {
"spot_instances": "70% cost savings",
"reserved_instances": "30% stability",
"right_sizing": "Monthly optimization"
}
},
"cost_optimization": {
"storage_costs": {
"current_monthly": "$15,000",
"optimized_monthly": "$8,500",
"savings_percentage": "43%"
},
"compute_costs": {
"current_monthly": "$25,000",
"optimized_monthly": "$18,000",
"savings_percentage": "28%"
},
"total_savings": {
"monthly": "$13,500",
"annual": "$162,000",
"savings_percentage": "34%"
}
}
}
return cloud_optimization
Data Governance and Quality Management
Data Governance Framework
Governance Area | Policy | Implementation Method | Responsible |
---|---|---|---|
Data Quality | • Completeness > 95% • Accuracy > 99% • Consistency Validation |
• Automated Quality Checks • Data Profiling • Outlier Detection |
Data Quality Team |
Data Security | • Encryption (Storage/Transit) • Access Control (RBAC) • Audit Logging |
• KMS Key Management • IAM Policies • CloudTrail Logging |
Security Team |
Data Lifecycle | • Retention Policies • Deletion Policies • Archive Policies |
• Automated Lifecycle • Policy Engine • Compliance Checks |
Data Architect |
Metadata Management | • Schema Registry • Data Lineage • Business Glossary |
• Automated Metadata Collection • Lineage Tracking • Glossary Management |
Data Steward |
Data Quality Monitoring
Quality Metric | Measurement Method | Threshold | Action |
---|---|---|---|
Completeness | NULL value ratio | < 5% | Data collection review |
Accuracy | Business rule validation | > 99% | Data transformation logic review |
Consistency | Referential integrity check | 100% | Relational constraint review |
Timeliness | Data refresh delay | < 1 hour | Pipeline performance optimization |
Validity | Data type validation | 100% | Schema validation enhancement |
Operational Monitoring and Alerting
Monitoring Dashboards
Dashboard | Target | Key Metrics | Refresh Interval |
---|---|---|---|
Operations Dashboard | Operations Team | • System Status • Throughput • Error Rate |
1 minute |
Business Dashboard | Business Team | • Data Quality • Processing Delay • Cost Trends |
5 minutes |
Developer Dashboard | Development Team | • Pipeline Performance • Query Performance • Resource Utilization |
1 minute |
Alert Rules
Alert Type | Condition | Severity | Action |
---|---|---|---|
System Alert | CPU > 80% | Warning | Scale up |
Data Alert | Quality score < 90% | Critical | Data team notification |
Performance Alert | Query time > 5 minutes | Warning | Query optimization |
Cost Alert | Daily cost > $2,000 | Warning | Cost review |
📚 Learning Summary
What We Learned in This Part
- Apache Spark and Iceberg Integration
- Batch processing, streaming processing, ML pipeline integration
- Structured Streaming and Iceberg integration
- Performance optimization strategies
- Apache Flink and Iceberg Integration
- Real-time streaming processing integration
- State management and checkpoint integration
- Combination of batch and streaming processing
- Presto/Trino and Iceberg Integration
- Interactive analytics query optimization
- Distributed query processing
- Metadata management integration
- Table Format Comparison Analysis
- Detailed comparison of Iceberg vs Delta Lake vs Hudi
- Selection guide and scenario-specific recommendations
- Migration strategies
- Cloud Storage Optimization
- S3, ADLS, GCS optimization strategies
- Cost optimization and performance optimization
- Lifecycle management
- Practical Project
- Large-scale data lakehouse construction
- Multi-engine integration architecture
- Data governance and quality management
Core Technology Stack
Technology | Role | Importance | Learning Points |
---|---|---|---|
Spark-Iceberg | Large-scale Data Processing | ⭐⭐⭐⭐⭐ | Batch/Streaming Integration, ML Pipelines |
Flink-Iceberg | Real-time Streaming | ⭐⭐⭐⭐⭐ | Low-latency Processing, State Management, Checkpoints |
Presto/Trino-Iceberg | Interactive Analytics | ⭐⭐⭐⭐ | Query Optimization, Metadata Caching |
Cloud Optimization | Cost/Performance Optimization | ⭐⭐⭐⭐⭐ | Storage Tiers, Lifecycle, Automation |
Data Governance | Quality/Security Management | ⭐⭐⭐⭐ | Quality Monitoring, Security Policies, Metadata |
Series Completion Summary
Through the Apache Iceberg Complete Guide Series, we have completely mastered:
- Part 1: Fundamentals and Table Format - Iceberg’s core concepts and basic features
- Part 2: Advanced Features and Performance Optimization - Production-grade optimization and operational management
- Part 3: Big Data Ecosystem Integration - Enterprise data platform construction
Next Steps
Now that you have completely mastered Apache Iceberg, explore these topics:
- Apache Kafka Complete Guide - Real-time streaming platform
- Apache Spark Advanced Guide - Advanced large-scale data processing
- Cloud Data Platform Architecture - Cloud data platform design
Series Complete: Apache Iceberg Complete Guide Series
Completely master enterprise-grade data platforms through Apache Iceberg and big data ecosystem integration! 🧊✨