Part 3: Apache Iceberg and Big Data Ecosystem Integration - Enterprise Data Platform

Complete guide to Apache Iceberg integration with Spark, Flink, Presto/Trino, comparison with Delta Lake and Hudi, cloud storage optimization, and building large-scale data lakehouse through practical projects.

📋 Table of Contents

  1. Apache Spark and Iceberg Integration
  2. Apache Flink and Iceberg Integration
  3. Presto/Trino and Iceberg Integration
  4. Table Format Comparison Analysis
  5. Cloud Storage Optimization
  6. Practical Project: Large-scale Data Lakehouse Construction
  7. Learning Summary

🔥 Apache Spark and Iceberg Integration

Spark-Iceberg Integration Overview

Apache Spark is one of the most powerful partners of Iceberg, providing a perfect combination for large-scale data processing and analytics.

Spark-Iceberg Integration Strategy

Integration Area Strategy Implementation Method Benefits
Batch Processing • Spark SQL + Iceberg
• DataFrame API Utilization
• Partition Optimization
• Iceberg Spark Connector
• Automatic Partition Pruning
• Schema Evolution Support
• Large-scale Data Processing
• Complex Analytical Queries
• Scalability
Streaming Processing • Structured Streaming
• Micro-batch Processing
• Real-time Updates
• Delta Lake-style Processing
• ACID Transactions
• Schema Evolution
• Real-time Data Processing
• Consistency Guarantee
• Fault Recovery
ML Pipeline • MLlib Integration
• Feature Store
• Model Version Management
• Iceberg-based Feature Storage
• Experiment Tracking
• Model Serving
• ML Workflow Integration
• Experiment Management
• Production Deployment

Spark-Iceberg Integration Implementation

class SparkIcebergIntegration:
    def __init__(self):
        self.spark_session = None
        self.iceberg_catalog = None
    
    def setup_spark_iceberg_environment(self):
        """Spark-Iceberg Environment Setup"""
        
        # Spark Configuration
        spark_config = {
            "spark.sql.extensions": "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
            "spark.sql.catalog.spark_catalog": "org.apache.iceberg.spark.SparkSessionCatalog",
            "spark.sql.catalog.spark_catalog.type": "hadoop",
            "spark.sql.catalog.spark_catalog.warehouse": "/warehouse",
            "spark.sql.defaultCatalog": "spark_catalog"
        }
        
        # Iceberg Configuration
        iceberg_config = {
            "write.target-file-size-bytes": "134217728",  # 128MB
            "write.parquet.compression-codec": "zstd",
            "write.metadata.delete-after-commit.enabled": "true",
            "write.data.delete-mode": "copy-on-write"
        }
        
        return spark_config, iceberg_config
    
    def demonstrate_spark_iceberg_operations(self):
        """Spark-Iceberg Operations Demonstration"""
        
        # Table Creation
        create_table_sql = """
        CREATE TABLE IF NOT EXISTS spark_catalog.default.user_events (
            user_id BIGINT,
            event_type STRING,
            event_data STRUCT<page_url: STRING, session_id: STRING>,
            timestamp TIMESTAMP
        ) USING iceberg
        PARTITIONED BY (days(timestamp))
        TBLPROPERTIES (
            'write.target-file-size-bytes' = '134217728',
            'write.parquet.compression-codec' = 'zstd'
        )
        """
        
        # Data Insertion
        insert_data_sql = """
        INSERT INTO spark_catalog.default.user_events
        SELECT 
            user_id,
            event_type,
            struct(page_url, session_id) as event_data,
            timestamp
        FROM source_table
        WHERE timestamp >= '2023-01-01'
        """
        
        # Schema Evolution
        evolve_schema_sql = """
        ALTER TABLE spark_catalog.default.user_events
        ADD COLUMN device_type STRING
        """
        
        # Partition Evolution
        evolve_partition_sql = """
        ALTER TABLE spark_catalog.default.user_events
        ADD PARTITION FIELD hours(timestamp)
        """
        
        return {
            "create_table": create_table_sql,
            "insert_data": insert_data_sql,
            "evolve_schema": evolve_schema_sql,
            "evolve_partition": evolve_partition_sql
        }

Spark Structured Streaming and Iceberg

Streaming Processing Strategy

Processing Mode Description Implementation Method Use Cases
Append Mode Add new data only • INSERT INTO
• Micro-batch
• Log Data
• Event Streams
Update Mode Update existing data • MERGE INTO
• Upsert Operations
• User Profiles
• Order Status
Complete Mode Rewrite entire table • TRUNCATE + INSERT
• Full Scan
• Aggregation Tables
• Summary Data

Streaming Processing Implementation

class SparkStreamingIceberg:
    def __init__(self):
        self.streaming_query = None
    
    def setup_streaming_processing(self):
        """Streaming Processing Setup"""
        
        # Kafka Source Configuration
        kafka_source_config = {
            "kafka.bootstrap.servers": "localhost:9092",
            "subscribe": "user_events",
            "startingOffsets": "latest",
            "failOnDataLoss": "false"
        }
        
        # Iceberg Sink Configuration
        iceberg_sink_config = {
            "checkpointLocation": "/checkpoint/streaming",
            "outputMode": "append",
            "trigger": "processingTime=30 seconds"
        }
        
        return kafka_source_config, iceberg_sink_config
    
    def implement_streaming_pipeline(self):
        """Streaming Pipeline Implementation"""
        
        # Streaming Query
        streaming_query = """
        (spark
         .readStream
         .format("kafka")
         .option("kafka.bootstrap.servers", "localhost:9092")
         .option("subscribe", "user_events")
         .load()
         .select(
             from_json(col("value").cast("string"), schema).alias("data")
         )
         .select(
             col("data.user_id").cast("long").alias("user_id"),
             col("data.event_type").alias("event_type"),
             struct(
                 col("data.page_url").alias("page_url"),
                 col("data.session_id").alias("session_id")
             ).alias("event_data"),
             col("data.timestamp").cast("timestamp").alias("timestamp")
         )
         .writeStream
         .format("iceberg")
         .option("checkpointLocation", "/checkpoint/streaming")
         .trigger(processingTime="30 seconds")
         .toTable("spark_catalog.default.user_events")
         .start()
        )
        """
        
        return streaming_query

Apache Flink is specialized for real-time streaming processing and can implement real-time data lakehouse through integration with Iceberg.

Integration Area Strategy Implementation Method Benefits
Streaming Processing • DataStream API
• Table API
• SQL API
• Flink Iceberg Connector
• Real-time Snapshots
• Exactly-once Processing
• Low-latency Processing
• High Throughput
• Fault Recovery
Batch Processing • DataSet API
• Batch Snapshots
• Historical Data Processing
• Iceberg Table Reading
• Partition Scanning
• Schema Evolution
• Large-scale Batch Processing
• Historical Analysis
• Data Migration
State Management • Flink State Backend
• Iceberg Metadata
• Checkpoint Integration
• State Persistence
• Metadata Consistency
• Recovery Optimization
• State Recovery
• Consistency Guarantee
• Performance Optimization
class FlinkIcebergIntegration:
    def __init__(self):
        self.flink_env = None
        self.table_env = None
    
    def setup_flink_iceberg_environment(self):
        """Flink-Iceberg Environment Setup"""
        
        # Flink Configuration
        flink_config = {
            "execution.runtime-mode": "streaming",
            "execution.checkpointing.interval": "30s",
            "execution.checkpointing.externalized-checkpoint-retention": "retain-on-cancellation",
            "state.backend": "rocksdb",
            "state.checkpoints.dir": "file:///checkpoints"
        }
        
        # Iceberg Configuration
        iceberg_config = {
            "write.target-file-size-bytes": "134217728",
            "write.parquet.compression-codec": "zstd",
            "write.metadata.delete-after-commit.enabled": "true"
        }
        
        return flink_config, iceberg_config
    
    def implement_flink_streaming_pipeline(self):
        """Flink Streaming Pipeline Implementation"""
        
        # Streaming Processing using Table API
        streaming_pipeline = """
        # Create Kafka Source Table
        CREATE TABLE kafka_source (
            user_id BIGINT,
            event_type STRING,
            page_url STRING,
            session_id STRING,
            timestamp TIMESTAMP(3),
            WATERMARK FOR timestamp AS timestamp - INTERVAL '5' SECOND
        ) WITH (
            'connector' = 'kafka',
            'topic' = 'user_events',
            'properties.bootstrap.servers' = 'localhost:9092',
            'format' = 'json'
        )
        
        # Create Iceberg Sink Table
        CREATE TABLE iceberg_sink (
            user_id BIGINT,
            event_type STRING,
            event_data STRUCT<page_url STRING, session_id STRING>,
            timestamp TIMESTAMP
        ) PARTITIONED BY (days(timestamp))
        WITH (
            'connector' = 'iceberg',
            'catalog-name' = 'hadoop_catalog',
            'catalog-type' = 'hadoop',
            'warehouse' = '/warehouse',
            'database-name' = 'default',
            'table-name' = 'user_events'
        )
        
        # Execute Streaming Query
        INSERT INTO iceberg_sink
        SELECT 
            user_id,
            event_type,
            STRUCT(page_url, session_id) as event_data,
            timestamp
        FROM kafka_source
        WHERE event_type IN ('page_view', 'click', 'purchase')
        """
        
        return streaming_pipeline
    
    def implement_flink_batch_processing(self):
        """Flink Batch Processing Implementation"""
        
        # Batch Processing Pipeline
        batch_pipeline = """
        # Historical Data Processing
        CREATE TABLE historical_data (
            user_id BIGINT,
            event_type STRING,
            event_count BIGINT,
            processing_date DATE
        ) PARTITIONED BY (processing_date)
        WITH (
            'connector' = 'iceberg',
            'catalog-name' = 'hadoop_catalog',
            'catalog-type' = 'hadoop',
            'warehouse' = '/warehouse',
            'database-name' = 'default',
            'table-name' = 'daily_event_summary'
        )
        
        # Daily Event Aggregation
        INSERT INTO historical_data
        SELECT 
            user_id,
            event_type,
            COUNT(*) as event_count,
            DATE(timestamp) as processing_date
        FROM iceberg_sink
        WHERE DATE(timestamp) = '2023-01-01'
        GROUP BY user_id, event_type, DATE(timestamp)
        """
        
        return batch_pipeline

🚀 Presto/Trino and Iceberg Integration

Presto/Trino-Iceberg Integration Overview

Presto and Trino are query engines optimized for interactive analytics, providing fast ad-hoc analysis through integration with Iceberg.

Presto/Trino-Iceberg Integration Strategy

Integration Area Strategy Implementation Method Benefits
Interactive Queries • SQL Interface
• Partition Pruning
• Column Pruning
• Iceberg Connector
• Metadata Caching
• Query Optimization
• Fast Response Time
• Complex Analytics
• User-friendly
Distributed Queries • MPP Architecture
• Parallel Processing
• Resource Management
• Cluster Scaling
• Query Scheduling
• Memory Management
• High Throughput
• Scalability
• Resource Efficiency
Metadata Management • Unified Catalog
• Schema Inference
• Statistics Information
• Hive Metastore Integration
• AWS Glue Support
• Automatic Schema Detection
• Unified Management
• Automation
• Compatibility

Presto/Trino-Iceberg Integration Implementation

class PrestoTrinoIcebergIntegration:
    def __init__(self):
        self.catalog_config = {}
        self.query_optimizer = None
    
    def setup_presto_trino_catalog(self):
        """Presto/Trino Catalog Setup"""
        
        # Iceberg Catalog Configuration
        catalog_config = {
            "connector.name": "iceberg",
            "hive.metastore.uri": "thrift://localhost:9083",
            "iceberg.catalog.type": "hive_metastore",
            "iceberg.catalog.warehouse": "/warehouse",
            "iceberg.file-format": "PARQUET",
            "iceberg.compression-codec": "ZSTD"
        }
        
        # Query Optimization Configuration
        optimization_config = {
            "optimizer.use-mark-distinct": "true",
            "optimizer.optimize-metadata-queries": "true",
            "optimizer.partition-pruning": "true",
            "optimizer.column-pruning": "true"
        }
        
        return catalog_config, optimization_config
    
    def demonstrate_analytical_queries(self):
        """Analytical Queries Demonstration"""
        
        # Complex Analytical Queries
        analytical_queries = {
            "user_behavior_analysis": """
            SELECT 
                user_id,
                COUNT(*) as total_events,
                COUNT(DISTINCT event_type) as unique_event_types,
                COUNT(DISTINCT DATE(timestamp)) as active_days,
                MAX(timestamp) as last_activity,
                AVG(CASE WHEN event_type = 'purchase' THEN 1 ELSE 0 END) as purchase_rate
            FROM iceberg.default.user_events
            WHERE timestamp >= CURRENT_DATE - INTERVAL '30' DAY
            GROUP BY user_id
            HAVING COUNT(*) >= 10
            ORDER BY total_events DESC
            LIMIT 100
            """,
            
            "real_time_metrics": """
            WITH hourly_metrics AS (
                SELECT 
                    DATE_TRUNC('hour', timestamp) as hour,
                    event_type,
                    COUNT(*) as event_count,
                    COUNT(DISTINCT user_id) as unique_users
                FROM iceberg.default.user_events
                WHERE timestamp >= CURRENT_TIMESTAMP - INTERVAL '24' HOUR
                GROUP BY DATE_TRUNC('hour', timestamp), event_type
            )
            SELECT 
                hour,
                SUM(event_count) as total_events,
                SUM(unique_users) as total_unique_users,
                COUNT(DISTINCT event_type) as event_types
            FROM hourly_metrics
            GROUP BY hour
            ORDER BY hour DESC
            """,
            
            "funnel_analysis": """
            WITH user_journey AS (
                SELECT 
                    user_id,
                    session_id,
                    timestamp,
                    event_type,
                    ROW_NUMBER() OVER (
                        PARTITION BY user_id, session_id 
                        ORDER BY timestamp
                    ) as step_number
                FROM iceberg.default.user_events
                WHERE timestamp >= CURRENT_DATE - INTERVAL '7' DAY
            ),
            funnel_steps AS (
                SELECT 
                    step_number,
                    event_type,
                    COUNT(DISTINCT CONCAT(user_id, '-', session_id)) as sessions
                FROM user_journey
                WHERE step_number <= 5
                GROUP BY step_number, event_type
            )
            SELECT 
                step_number,
                event_type,
                sessions,
                LAG(sessions) OVER (ORDER BY step_number) as previous_step_sessions,
                ROUND(sessions * 100.0 / LAG(sessions) OVER (ORDER BY step_number), 2) as conversion_rate
            FROM funnel_steps
            ORDER BY step_number, event_type
            """
        }
        
        return analytical_queries
    
    def implement_performance_optimization(self):
        """Performance Optimization Implementation"""
        
        # Query Optimization Strategies
        optimization_strategies = {
            "partition_pruning": {
                "description": "I/O optimization through partition pruning",
                "implementation": "Add partition column conditions in WHERE clause",
                "benefit": "Reduce number of partitions to scan"
            },
            "column_pruning": {
                "description": "I/O optimization by selecting only necessary columns",
                "implementation": "Specify only required columns in SELECT clause",
                "benefit": "Reduce network and memory usage"
            },
            "predicate_pushdown": {
                "description": "Push filter conditions to storage level",
                "implementation": "Optimize WHERE clause conditions",
                "benefit": "Reduce I/O through storage-level filtering"
            },
            "statistics_utilization": {
                "description": "Utilize table statistics information",
                "implementation": "Update statistics with ANALYZE TABLE command",
                "benefit": "Query planner optimization"
            }
        }
        
        return optimization_strategies

🔄 Table Format Comparison Analysis

Major Table Format Comparison

Characteristic Apache Iceberg Delta Lake Apache Hudi
Developer Netflix → Apache Databricks Uber → Apache
Primary Language Java, Python, Scala Scala, Python, Java Java, Scala
Schema Evolution ✅ Full Support ✅ Full Support ✅ Full Support
Partition Evolution ✅ Full Support ❌ Not Supported ✅ Partial Support
ACID Transactions ✅ Full Support ✅ Full Support ✅ Full Support
Time Travel ✅ Supported ✅ Supported ✅ Supported
Cloud Support ✅ Excellent ✅ Excellent 🟡 Good
Performance 🟢 Optimized 🟢 Optimized 🟡 Good
Ecosystem 🟢 Extensive 🟢 Spark-centric 🟡 Limited

Detailed Feature Comparison

Schema Management

Feature Iceberg Delta Lake Hudi
Schema Addition ✅ Backward Compatible ✅ Backward Compatible ✅ Backward Compatible
Schema Deletion ✅ Backward Compatible ✅ Backward Compatible ✅ Backward Compatible
Type Change ✅ Conditionally Compatible ✅ Conditionally Compatible ✅ Conditionally Compatible
Schema Registry ✅ Supported ✅ Supported ❌ Not Supported

Partitioning

Feature Iceberg Delta Lake Hudi
Partition Addition ✅ Runtime ❌ Requires Reconfiguration ✅ Runtime
Partition Deletion ✅ Runtime ❌ Requires Reconfiguration ✅ Runtime
Partition Transformation ✅ Runtime ❌ Requires Reconfiguration ✅ Runtime
Hidden Partitioning ✅ Supported ❌ Not Supported ❌ Not Supported

Performance Characteristics

Characteristic Iceberg Delta Lake Hudi
Read Performance 🟢 Optimized 🟢 Optimized 🟡 Good
Write Performance 🟢 Optimized 🟢 Optimized 🟡 Good
Commit Performance 🟢 Fast 🟡 Good 🟡 Good
Metadata Size 🟢 Small 🟡 Good 🔴 Large

Selection Guide

Iceberg Selection Scenarios

Scenario Reason Implementation Method
Multiple Query Engines • Spark, Flink, Presto/Trino Support
• Vendor Neutrality
• Unified Catalog Construction
• Standard SQL Interface
Partition Evolution • Runtime Partition Changes
• Hidden Partitioning
• Gradual Partition Strategy
• Automatic Optimization
Cloud Native • S3, ADLS, GCS Optimization
• Object Storage Friendly
• Cloud Storage Integration
• Cost Optimization

Delta Lake Selection Scenarios

Scenario Reason Implementation Method
Spark-centric • Spark Ecosystem Integration
• Databricks Support
• Spark-based Pipelines
• Databricks Platform
ML/AI Workloads • MLlib Integration
• Feature Store
• ML Pipeline Construction
• Experiment Management
Existing Spark Users • Minimal Learning Curve
• Code Reuse
• Gradual Migration
• Compatibility Maintenance

Hudi Selection Scenarios

Scenario Reason Implementation Method
Real-time Processing • Streaming Optimization
• Low-latency Updates
• Kafka Integration
• Real-time Pipelines
CDC (Change Data Capture) • Database Change Detection
• Real-time Synchronization
• Debezium Integration
• CDC Pipelines
Upsert-centric • Frequent Updates
• Deduplication
• Upsert Strategy
• Data Quality Management

☁️ Cloud Storage Optimization

Cloud Storage Comparison

Storage Iceberg Support Optimization Features Cost Model Performance
Amazon S3 ✅ Full Support • Intelligent Tiering
• S3 Select
• Transfer Acceleration
• Storage Class-based Pricing
• Request-based Pricing
🟢 Excellent
Azure Data Lake Storage ✅ Full Support • Hierarchical Namespace
• Blob Storage Integration
• Azure Analytics
• Hot/Cool/Archive
• Access Frequency-based
🟢 Excellent
Google Cloud Storage ✅ Full Support • Lifecycle Management
• Nearline/Coldline
• Transfer Service
• Storage Class-based Pricing
• Network Pricing
🟢 Excellent

Cloud-specific Optimization Strategies

Amazon S3 Optimization

Optimization Area Strategy Implementation Method Effect
Storage Classes • Intelligent Tiering
• Automatic Lifecycle
• S3 Lifecycle Policies
• Access Pattern Analysis
• 40-60% Cost Savings
• Automatic Optimization
Transfer Optimization • Transfer Acceleration
• Multipart Upload
• CloudFront Integration
• Parallel Upload
• 50-500% Speed Improvement
• Stability Enhancement
Request Optimization • S3 Select
• Glacier Select
• Column-based Queries
• Direct Compressed Data Queries
• 80% Network Reduction
• Query Speed Improvement

Azure Data Lake Storage Optimization

Optimization Area Strategy Implementation Method Effect
Hierarchical Namespace • Directory-based Policies
• Metadata Optimization
• ACL-based Access Control
• Per-directory Policies
• Enhanced Security
• Management Efficiency
Storage Tiers • Hot/Cool/Archive
• Automatic Tier Movement
• Lifecycle Policies
• Access Pattern-based Movement
• 30-70% Cost Savings
• Automatic Management
Analytics Integration • Azure Synapse
• Azure Databricks
• Native Integration
• Optimized Connectors
• Performance Enhancement
• Unified Management

Google Cloud Storage Optimization

Optimization Area Strategy Implementation Method Effect
Lifecycle Management • Automatic Class Changes
• Deletion Policies
• Lifecycle Rules
• Condition-based Policies
• 40-80% Cost Savings
• Automatic Management
Transfer Optimization • Transfer Service
• Parallel Processing
• Large Data Transfer
• Network Optimization
• Transfer Speed Improvement
• Stability Enhancement
Security Optimization • IAM Integration
• Encryption
• Fine-grained Permission Management
• Customer-managed Keys
• Enhanced Security
• Compliance

Cloud Storage Optimization Implementation

class CloudStorageOptimizer:
    def __init__(self):
        self.storage_configs = {}
        self.optimization_rules = {}
    
    def setup_s3_optimization(self):
        """S3 Optimization Setup"""
        
        # Storage Class Optimization
        storage_class_config = {
            "standard": {
                "use_case": "Frequently accessed data",
                "retention": "30_days",
                "cost_per_gb": 0.023
            },
            "standard_ia": {
                "use_case": "Occasionally accessed data",
                "retention": "90_days",
                "cost_per_gb": 0.0125
            },
            "glacier": {
                "use_case": "Long-term archived data",
                "retention": "365_days",
                "cost_per_gb": 0.004
            },
            "intelligent_tiering": {
                "use_case": "Data with irregular access patterns",
                "automation": True,
                "cost_per_gb": "variable"
            }
        }
        
        # Lifecycle Policy
        lifecycle_policy = {
            "rules": [
                {
                    "id": "IcebergDataLifecycle",
                    "status": "Enabled",
                    "transitions": [
                        {
                            "days": 30,
                            "storage_class": "STANDARD_IA"
                        },
                        {
                            "days": 90,
                            "storage_class": "GLACIER"
                        }
                    ],
                    "expiration": {
                        "days": 2555  # 7 years
                    }
                }
            ]
        }
        
        return storage_class_config, lifecycle_policy
    
    def setup_azure_optimization(self):
        """Azure Storage Optimization Setup"""
        
        # Storage Tier Configuration
        storage_tiers = {
            "hot": {
                "use_case": "Frequently accessed data",
                "retention": "30_days",
                "cost_per_gb": 0.0184
            },
            "cool": {
                "use_case": "Occasionally accessed data",
                "retention": "90_days",
                "cost_per_gb": 0.01
            },
            "archive": {
                "use_case": "Long-term archived data",
                "retention": "365_days",
                "cost_per_gb": 0.00099
            }
        }
        
        # Lifecycle Management Policy
        lifecycle_management = {
            "rules": [
                {
                    "name": "IcebergDataLifecycle",
                    "enabled": True,
                    "type": "Lifecycle",
                    "definition": {
                        "filters": {
                            "blob_types": ["blockBlob"],
                            "prefix_match": ["iceberg/"]
                        },
                        "actions": {
                            "base_blob": {
                                "tier_to_cool": {
                                    "days_after_modification_greater_than": 30
                                },
                                "tier_to_archive": {
                                    "days_after_modification_greater_than": 90
                                },
                                "delete": {
                                    "days_after_modification_greater_than": 2555
                                }
                            }
                        }
                    }
                }
            ]
        }
        
        return storage_tiers, lifecycle_management
    
    def setup_gcs_optimization(self):
        """Google Cloud Storage Optimization Setup"""
        
        # Storage Class Configuration
        storage_classes = {
            "standard": {
                "use_case": "Frequently accessed data",
                "retention": "30_days",
                "cost_per_gb": 0.02
            },
            "nearline": {
                "use_case": "Data accessed monthly",
                "retention": "30_days",
                "cost_per_gb": 0.01
            },
            "coldline": {
                "use_case": "Data accessed quarterly",
                "retention": "90_days",
                "cost_per_gb": 0.007
            },
            "archive": {
                "use_case": "Data accessed annually",
                "retention": "365_days",
                "cost_per_gb": 0.0012
            }
        }
        
        # Lifecycle Rules
        lifecycle_rules = {
            "rules": [
                {
                    "action": {
                        "type": "SetStorageClass",
                        "storageClass": "nearline"
                    },
                    "condition": {
                        "age": 30
                    }
                },
                {
                    "action": {
                        "type": "SetStorageClass",
                        "storageClass": "coldline"
                    },
                    "condition": {
                        "age": 90
                    }
                },
                {
                    "action": {
                        "type": "SetStorageClass",
                        "storageClass": "archive"
                    },
                    "condition": {
                        "age": 365
                    }
                },
                {
                    "action": {
                        "type": "Delete"
                    },
                    "condition": {
                        "age": 2555
                    }
                }
            ]
        }
        
        return storage_classes, lifecycle_rules

🏗️ Practical Project: Large-scale Data Lakehouse Construction

Project Overview

Building an Iceberg-based data lakehouse for a large-scale e-commerce platform, integrating various query engines and cloud storage.

System Architecture

Overall Architecture

Layer Components Technology Stack Role
Data Ingestion • Real-time Streams
• Batch Files
• API Data
• Kafka, Flink
• Spark, Airflow
• REST API
• Data Collection
• Real-time Processing
• Batch Processing
Data Storage • Raw Data
• Refined Data
• Aggregated Data
• Iceberg Tables
• S3/ADLS/GCS
• Partitioning
• Data Storage
• Version Management
• Schema Evolution
Data Processing • ETL/ELT
• Real-time Analytics
• ML Pipeline
• Spark, Flink
• Presto/Trino
• MLlib, TensorFlow
• Data Transformation
• Analytical Processing
• ML Modeling
Data Serving • BI Tools
• API Services
• Real-time Dashboards
• Tableau, PowerBI
• REST API
• Grafana, Kibana
• Data Visualization
• API Provision
• Monitoring

Data Domain Design

Data Domain Table Count Data Volume Partition Strategy Retention Policy
User Analytics 25 tables 500TB Date + User Bucket 7 years
Order Analytics 15 tables 300TB Date + Region 10 years
Product Catalog 10 tables 50TB Category Permanent
Marketing Analytics 20 tables 200TB Campaign + Date 5 years
Financial Analytics 12 tables 100TB Monthly 15 years

Project Implementation

class EnterpriseDataLakehouse:
    def __init__(self):
        self.catalog_manager = CatalogManager()
        self.schema_registry = SchemaRegistry()
        self.data_governance = DataGovernance()
    
    def design_data_architecture(self):
        """Data Architecture Design"""
        
        architecture = {
            "data_layers": {
                "bronze_layer": {
                    "purpose": "Raw data storage",
                    "tables": [
                        "user_events_raw",
                        "order_events_raw", 
                        "product_updates_raw",
                        "marketing_events_raw"
                    ],
                    "partitioning": "hourly",
                    "retention": "30_days",
                    "format": "parquet",
                    "compression": "snappy"
                },
                "silver_layer": {
                    "purpose": "Refined data storage",
                    "tables": [
                        "user_events_cleaned",
                        "order_events_cleaned",
                        "product_catalog",
                        "marketing_campaigns"
                    ],
                    "partitioning": "daily",
                    "retention": "7_years",
                    "format": "parquet",
                    "compression": "zstd"
                },
                "gold_layer": {
                    "purpose": "Business analytics aggregated data",
                    "tables": [
                        "user_behavior_summary",
                        "daily_sales_summary",
                        "product_performance",
                        "marketing_effectiveness"
                    ],
                    "partitioning": "monthly",
                    "retention": "10_years",
                    "format": "parquet",
                    "compression": "zstd"
                }
            },
            "integration_patterns": {
                "real_time_ingestion": {
                    "source": "Kafka topics",
                    "processing": "Apache Flink",
                    "destination": "Bronze layer",
                    "latency": "< 5 minutes"
                },
                "batch_processing": {
                    "source": "External systems",
                    "processing": "Apache Spark",
                    "destination": "Silver/Gold layers",
                    "frequency": "daily"
                },
                "streaming_analytics": {
                    "source": "Bronze layer",
                    "processing": "Apache Flink + Spark",
                    "destination": "Gold layer",
                    "latency": "< 30 minutes"
                }
            }
        }
        
        return architecture
    
    def implement_multi_engine_integration(self):
        """Multi-engine Integration Implementation"""
        
        integration_config = {
            "spark_integration": {
                "use_cases": [
                    "ETL jobs",
                    "Batch analytics",
                    "ML pipelines"
                ],
                "tables": [
                    "user_events_processed",
                    "order_analytics",
                    "ml_features"
                ],
                "optimization": {
                    "target_file_size": "128MB",
                    "compression": "zstd",
                    "partitioning": "adaptive"
                }
            },
            "flink_integration": {
                "use_cases": [
                    "Real-time streaming",
                    "Event processing",
                    "Real-time aggregation"
                ],
                "tables": [
                    "real_time_metrics",
                    "streaming_events",
                    "live_dashboards"
                ],
                "optimization": {
                    "checkpoint_interval": "30s",
                    "parallelism": "auto",
                    "state_backend": "rocksdb"
                }
            },
            "presto_trino_integration": {
                "use_cases": [
                    "Interactive analytics",
                    "Ad-hoc queries",
                    "BI tool integration"
                ],
                "tables": [
                    "analytical_views",
                    "summary_tables",
                    "reporting_data"
                ],
                "optimization": {
                    "metadata_caching": True,
                    "query_optimization": True,
                    "parallel_execution": True
                }
            }
        }
        
        return integration_config
    
    def setup_cloud_optimization(self):
        """Cloud Optimization Setup"""
        
        cloud_optimization = {
            "storage_optimization": {
                "s3_optimization": {
                    "storage_classes": {
                        "standard": "Frequently accessed data (30 days)",
                        "standard_ia": "Occasionally accessed data (90 days)",
                        "glacier": "Long-term archived data (365 days)"
                    },
                    "lifecycle_policies": {
                        "automated_tiering": True,
                        "cost_optimization": True,
                        "retention_management": True
                    }
                },
                "performance_optimization": {
                    "intelligent_tiering": True,
                    "transfer_acceleration": True,
                    "s3_select": True
                }
            },
            "compute_optimization": {
                "auto_scaling": {
                    "spark_cluster": "CPU-based scaling",
                    "flink_cluster": "Throughput-based scaling",
                    "presto_cluster": "Query queue-based scaling"
                },
                "resource_optimization": {
                    "spot_instances": "70% cost savings",
                    "reserved_instances": "30% stability",
                    "right_sizing": "Monthly optimization"
                }
            },
            "cost_optimization": {
                "storage_costs": {
                    "current_monthly": "$15,000",
                    "optimized_monthly": "$8,500",
                    "savings_percentage": "43%"
                },
                "compute_costs": {
                    "current_monthly": "$25,000",
                    "optimized_monthly": "$18,000",
                    "savings_percentage": "28%"
                },
                "total_savings": {
                    "monthly": "$13,500",
                    "annual": "$162,000",
                    "savings_percentage": "34%"
                }
            }
        }
        
        return cloud_optimization

Data Governance and Quality Management

Data Governance Framework

Governance Area Policy Implementation Method Responsible
Data Quality • Completeness > 95%
• Accuracy > 99%
• Consistency Validation
• Automated Quality Checks
• Data Profiling
• Outlier Detection
Data Quality Team
Data Security • Encryption (Storage/Transit)
• Access Control (RBAC)
• Audit Logging
• KMS Key Management
• IAM Policies
• CloudTrail Logging
Security Team
Data Lifecycle • Retention Policies
• Deletion Policies
• Archive Policies
• Automated Lifecycle
• Policy Engine
• Compliance Checks
Data Architect
Metadata Management • Schema Registry
• Data Lineage
• Business Glossary
• Automated Metadata Collection
• Lineage Tracking
• Glossary Management
Data Steward

Data Quality Monitoring

Quality Metric Measurement Method Threshold Action
Completeness NULL value ratio < 5% Data collection review
Accuracy Business rule validation > 99% Data transformation logic review
Consistency Referential integrity check 100% Relational constraint review
Timeliness Data refresh delay < 1 hour Pipeline performance optimization
Validity Data type validation 100% Schema validation enhancement

Operational Monitoring and Alerting

Monitoring Dashboards

Dashboard Target Key Metrics Refresh Interval
Operations Dashboard Operations Team • System Status
• Throughput
• Error Rate
1 minute
Business Dashboard Business Team • Data Quality
• Processing Delay
• Cost Trends
5 minutes
Developer Dashboard Development Team • Pipeline Performance
• Query Performance
• Resource Utilization
1 minute

Alert Rules

Alert Type Condition Severity Action
System Alert CPU > 80% Warning Scale up
Data Alert Quality score < 90% Critical Data team notification
Performance Alert Query time > 5 minutes Warning Query optimization
Cost Alert Daily cost > $2,000 Warning Cost review

📚 Learning Summary

What We Learned in This Part

  1. Apache Spark and Iceberg Integration
    • Batch processing, streaming processing, ML pipeline integration
    • Structured Streaming and Iceberg integration
    • Performance optimization strategies
  2. Apache Flink and Iceberg Integration
    • Real-time streaming processing integration
    • State management and checkpoint integration
    • Combination of batch and streaming processing
  3. Presto/Trino and Iceberg Integration
    • Interactive analytics query optimization
    • Distributed query processing
    • Metadata management integration
  4. Table Format Comparison Analysis
    • Detailed comparison of Iceberg vs Delta Lake vs Hudi
    • Selection guide and scenario-specific recommendations
    • Migration strategies
  5. Cloud Storage Optimization
    • S3, ADLS, GCS optimization strategies
    • Cost optimization and performance optimization
    • Lifecycle management
  6. Practical Project
    • Large-scale data lakehouse construction
    • Multi-engine integration architecture
    • Data governance and quality management

Core Technology Stack

Technology Role Importance Learning Points
Spark-Iceberg Large-scale Data Processing ⭐⭐⭐⭐⭐ Batch/Streaming Integration, ML Pipelines
Flink-Iceberg Real-time Streaming ⭐⭐⭐⭐⭐ Low-latency Processing, State Management, Checkpoints
Presto/Trino-Iceberg Interactive Analytics ⭐⭐⭐⭐ Query Optimization, Metadata Caching
Cloud Optimization Cost/Performance Optimization ⭐⭐⭐⭐⭐ Storage Tiers, Lifecycle, Automation
Data Governance Quality/Security Management ⭐⭐⭐⭐ Quality Monitoring, Security Policies, Metadata

Series Completion Summary

Through the Apache Iceberg Complete Guide Series, we have completely mastered:

  1. Part 1: Fundamentals and Table Format - Iceberg’s core concepts and basic features
  2. Part 2: Advanced Features and Performance Optimization - Production-grade optimization and operational management
  3. Part 3: Big Data Ecosystem Integration - Enterprise data platform construction

Next Steps

Now that you have completely mastered Apache Iceberg, explore these topics:

  • Apache Kafka Complete Guide - Real-time streaming platform
  • Apache Spark Advanced Guide - Advanced large-scale data processing
  • Cloud Data Platform Architecture - Cloud data platform design

Series Complete: Apache Iceberg Complete Guide Series


Completely master enterprise-grade data platforms through Apache Iceberg and big data ecosystem integration! 🧊✨